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Abstract — This paper is a theoretical analysis of discrete time 

convolution and correlation and to introduce a unified vector 

multiplication approach for calculating discrete convolution and 

correlation, both of which are important concepts in the design 

and analysis of signals and systems and are usually encountered 

in the first course in signals and systems analysis. There are 

software tools for calculating them, however, it is important to 

learn now to compute them by hand. Several methods have been 

proposed to compute them by hand, most of which can be very 

involving. However, a closer look at the concepts reveal that the 

convolution and correlation sums are actually vector 

multiplication with diagonalwise addition and for finite 

sequences, can be computed by hand the same way. The method 

is also extended to N-point circular convolution. The method 

also makes it clearer to see the similarities and differences 

between convolution and correlation. 

 
Index Terms — Convolution, correlation, N-point circular 

convolution, vector multiplication. 

 

I. INTRODUCTION 

Convolution and correlation are basic foundations in the 

analysis and design of signals and systems. The convolution 

and correlation of two signals are usually computed using 

summation for discrete-time (DT) signals. DT convolution is 

usually referred to as the convolution sum. For DT signals, 

there are two types of convolution-linear convolution (which 

is basic), and N-point circular convolution. Correlation can 

be computed as crosscorrelation (between two different 

signals), or autocorrelation (a signal with itself). A first 

approach to understanding linear convolution is by 

computing the convolution sum of two finite length 

sequences of 1-dimension and it has been described in most 

of the popular textbooks in signals and systems analysis e.g. 

[1]–[6]. Correlation is discussed in [1], [3] and [4]. 

For convolution the solution methods usually presented in 

the books are analytical convolution, graphical convolution, 

and the Z-transform approach. For correlation, analytical and 

graphical methods are also presented but by using finite 

length sequences. Analytical convolution is more generic in 

that it can obtain a closed-form solution when the lengths of 

the sequences are unknown. In graphical convolution, the 

graphical representation of both signals to be convolved are 

drawn and manipulated to obtain the convolution sum. 

None of the books actually present the convolution and 

correlation sums as the vector multiplication of both signals 

with diagonal addition. 
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It is acknowledged here that it is indispensable to understand 

analytical convolution because that is the only method that can 

obtain a closed form solution. Moreover, the vector 

multiplication approach presented here is not to prove that it is 

the superior method to any of the other approaches, rather it is 

an alternative method to arrive at the same solution. It is left for 

the readers to compare and decide which approach(es) to use. 

In [7], it is shown that the discrete convolution of finite 

length sequences is analogous to polynomial multiplication. 

However, it was presented as a novel method for calculating 

the convolution sum of two finite length sequences. In this 

paper, an attempt is made to generalize and show that 

whichever way the convolution sum is calculated, and 

whether the sequences are finite or not, the convolution sum 

actually corresponds to the vector multiplication of both 

signals followed by diagonal addition.  

Also, most of the reviewed textbooks explain that 

convolution in the time domain is multiplication in the Z-

domain. Therefore, one may obtain the convolution sum by 

first obtaining the Z-transforms of both signals before 

performing the multiplication which results in the 

convolution sum. However, it will be shown here that for 

finite length signals, one can directly perform the vector 

multiplication of both signals in the time domain without 

taking the Z-transforms and obtain the same result as the Z-

transform approach.  

The rest of the paper is organized as follows. In Section II 

the convolution sum is described in terms of vector 

multiplication by using some examples to show that the sum 

obtained by the analytical, graphical and Z-transform 

approaches can be obtained by vector multiplication with left 

diagonal addition. In Section III correlation is described in 

terms of vector multiplication with right diagonal addition by 

using some examples. In Section IV the vector multiplication 

method is extended to N-point circular convolution. In 

Section V the commutativity property is analyzed for 

convolution and correlation in terms of the vector 

multiplication approach. Section VI summarizes the paper. 

 

II. CONVOLUTION AS VECTOR MULTIPLICATION WITH LEFT 

DIAGONAL ADDITION 

To show that the convolution sum is vector multiplication 

with left diagonal addition several examples will be presented 

from the reviewed books. The analytical, graphical and Z-

transform solutions will be presented (or references will be 

made to solutions in pages in the books). Then the vector 
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multiplication approach will be presented, and the solutions 

compared. 

A. Finite Sequence Example 

Consider the finite sequences of Example 2.3.2 in [4] (pp. 

75-76) which is as follows. Compute the convolution of 

ℎ[𝑘] = [1, 2̂, 1, −1] and 𝑥[𝑘] = [1̂, 2,3,1]. The   ̂indicates the 

𝑘 = 0 sample. Linear convolution is usually represented by 

the infinite summation: 

 

𝑦[𝑘] = 𝑥[𝑘] ∗ ℎ[𝑘] = ∑ 𝑥[𝑚]∞
𝑚=−∞ ℎ[𝑘 − 𝑚]  (1) 

 

From ℎ[𝑘] and 𝑥[𝑘], −1 ≤ 𝑘 ≤ 5, and since 𝑥[𝑘] is causal, 

the analytical solution is as follows: 

 

𝑦[𝑘] = ∑ 𝑥[𝑚]ℎ[𝑘 − 𝑚]

3

𝑚=0

 

 

𝑦[−1] = 𝑥[0]ℎ[−1] + 𝑥[1]ℎ[−2] = 1 

 

𝑦[0] = 𝑥[0]ℎ[0] + 𝑥[1]ℎ[−1] = 2 + 2 = 4 

 

𝑦[1] = 𝑥[0]ℎ[1] + 𝑥[1]ℎ[0] + 𝑥[2]ℎ[−1] = 2 + 4 + 2 = 8  

 

𝑦[2] = 𝑥[0]ℎ[2] + 𝑥[1]ℎ[1] + 𝑥[2]ℎ[0] + 𝑥[3]ℎ[−1] = 8 

 

𝑦[3] = 𝑥[1]ℎ[2] + 𝑥[2]ℎ[1] + 𝑥[3]ℎ[0] = −2 + 3 + 2 = 3 

 

𝑦[4] = 𝑥[2]ℎ[2] + 𝑥[3]ℎ[1] = −3 + 1 = −2 

 

𝑦[5] = 𝑥[3]ℎ[2] = −1 

 

The graphical solution is presented in [4] (p. 76) and 

occupies a full page. The solution obtained by vector 

multiplication with left diagonal addition is as follows.  

First, the signals to be convolved 𝑥[𝑘], ℎ[𝑘] are 

represented as row vectors. Then the convolution sum is 

defined as  

 

𝑦[𝑘] = 𝑥[𝑘] ∗ ℎ[𝑘] = ∑ ⋌ [𝑘]ℎ𝑇𝑥∞
𝑘=−∞   (2) 

 

Equivalently: 

 

𝑦[𝑘] = ℎ[𝑘] ∗ 𝑥[𝑘] = ∑ ⋌ [𝑘]𝑥𝑇ℎ

∞

𝑘=−∞

  

 

where ∑ ⋌ [𝑘]∞
𝑘=−∞  indicates the left diagonal sums of the 

matrix obtained from ℎ𝑇𝑥 or 𝑥𝑇ℎ. Let  

 

𝑦′ = ℎ𝑇𝑥 

 

Then  

𝑦′ = [

1 2 3 1
2 4 6 2
1 2 3 1

−1 −2 −3 −1

] 

 

Taking left diagonal sums of 𝑦′ gives  

 

𝑦[𝑛] = [1, 4̂, 8, 8,3, −2, −1] 

Observe that each left diagonal sum corresponds to each 

𝑦[𝑛] of the analytical solution. 

One may easily obtain 𝑦′ by using a scientific calculator or 

software. Then what is left is simply additions. Otherwise, 

one may perform the multiplications and addition by hand 

using the tabular form shown below.  

 
 1̂ 2 3 1 𝑥[𝑘] 

ℎ[𝑘] 

 1 2 3 1 1 

1 2 4 6 2 2̂ 

4 1 2 3 1 1 

8 −1 −2 −3 −1 −1 

𝑦[𝑘] 8 3 −2 −1  

 

𝑦[𝑛] = [1, 4̂, 8, 8,3, −2, −1] 

 

B. Non-finite Sequence Example 

Consider Example 9.6 from [1] (pp. 588-589), which is as 

follows. Determine the convolution sum 𝑐[𝑘] = 𝑓[𝑘] ∗ 𝑔[𝑘] 
for the signals 

  

𝑓[𝑘] = (0.8)𝑘𝑢[𝑘] and 𝑔[𝑘] = (0.3)𝑘𝑢[𝑘]. 
 

The analytical closed form solution presented in [1] is  

 

𝑐[𝑘] = 2[(0.8)𝑘+1 − (0.3)𝑘+1]𝑢[𝑘] 
 

Obtaining 𝑐[𝑘] samples for 𝑘 = 0, ⋯ ,25 (𝑐[𝑘] ≈ 0 for 

𝑘 > 25) yields the sequence: 

 

𝑐[𝑘] = [1, 1.1, 0.97, 0.8, 0.65, 0.52, 0.42, 0.34, 0.27, 0.21, 

0.17, 0.14, 0.11, 0.09, 0.07, 0.06, 0.05, 0.04, 0.03, 0.023, 

0.02, 0.02, 0.012, 0.0094, 0.0076, 0.006].  

 

The graphical solution is presented in Example 9.8 [1] (p. 

593) with the same result as 𝑐[𝑘] above. It occupies a full 

page. The final result is shown in Fig. 1. 

To obtain the vector multiplication solution, finite numeric 

samples of 𝑓[𝑘] (for 𝑘 = 0, ⋯ ,20 ) and 𝑔[𝑘] (for 𝑘 = 0, ⋯ ,3) 

are taken. Table I shows the multiplication and solution 

obtained. Evidently, the result is the same as the analytical 

solution (which is closed form) and the graphical solution. 

This is the first paper where a closed form solution is 

validated numerically by vector multiplication of samples of 

the original sequences. 

 

 

Fig. 1. The convolution sum 𝒄[𝒌] = 𝒇[𝒌] ∗ 𝒈[𝒌]. 
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TABLE I: C[K] BY VECTOR MULTIPLICATION 

 0 1 2 3 4 5 6 7 8 9 10 𝑘 

 1̂ 0.8 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11 
𝑓[𝑘] 

𝑔[𝑘] 

 1 0.8 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11 1̂ 

1̂ 0.3 0.24 0.18 0.15 0.12 0.09 0.09 0.06 0.05 0.039 0.033 0.3 

1.1 0.09 0.07 0.05 0.05 0.04 0.03 0.03 0.02 0.015 0.012 0.009 0.09 

0.97 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.006 0.005 0.004 0.003 0.03 

𝑐[𝑘] 0.79 0.64 0.52 0.4 0.34 0.27 0.21 0.17 0.136 0.109 0.087  

 

 11 12 13 14 15 18 17 18 19 20 𝑘 

 0.086 0.069 0.055 0.044 0.035 0.028 0.023 0.018 0.014 0.012 
𝑓[𝑘] 

𝑔[𝑘] 

 0.086 0.069 0.055 0.044 0.035 0.028 0.023 0.018 0.014 0.012 1̂ 

1̂ 0.027 0.021 0.018 0.012 0.012 0.009 0.006 0.006 0.003 0.003 0.3 

1.1 0.008 0.006 0.005 0.0036 0.0036 0.0027 0.0018 0.0018 0.0009 0.0009 0.09 

0.97 0.003 0.002 0.0018 0.0012 0.0012 0.0009 0.0006 0.0006 0.0003 0.0003 0.03 

𝑐[𝑘] 0.071 0.055 0.0454 0.0368 0.0279 0.0227 0.0174 0.0045 0.0012 0.0003  

The small differences in latter values are due to approximations. 

 

In addition to the analytical and graphical solutions usually 

presented in the books, a sliding tape method as an alternative 

to graphical convolution is presented in [1] as Example 9.9 

(pp. 594-595). The tabularized vector multiplication solution 

is shown below. 

 

 0̂ 1 2 3 4 5 𝑓[𝑘] 
𝑔[𝑘] 

 0 1 2 3 4 5 1̂ 

0 0 1 2 3 4 5 1 

1 0 1 2 3 4 5 1 

3 0 1 2 3 4 5 1 

6 0 1 2 3 4 5 1 

10 0 1 2 3 4 5 1 

𝑐[𝑘] 15 15 14 12 9 5  

 

𝑐[𝑘] = [0̂, 1, 3,6,10,15,15,14,12,9,5] 

 

The solution is the same as that obtained from the sliding 

tape method. In addition, [1] (p. 590) provides a table of 

convolution sums to aid in the calculation of analytical 

convolution. 

C. Z-transform Example 

Next, it is shown that for finite sequences (or unless a 

closed form solution is desired), one does not need to apply 

the Z-transform to a pair of sequences before multiplication 

in order to simplify the computation of the convolution sum. 

Rather, one can apply vector multiplication directly. To this 

end, consider Example 3.2.9 in [4] (p. 165) which is as 

follows. Compute the convolution 𝑥[𝑛] of the signals: 

 

𝑥1[𝑛] = [1̂, −2,1];  𝑥2[𝑛] = {
1, 0 ≤ 𝑛 ≤ 5
0, otherwise

 

 

The solution using the Z-transform approach presented in 

[4] is as follows:  

First, the Z-transform of both signals is calculated 

 

𝑋1(𝑧) = 1 − 2𝑧−1 + 𝑧−2  
 

𝑋2(𝑧) = 1 + 𝑧−1 + 𝑧−2 + 𝑧−3 + 𝑧−4 + 𝑧−5  
 

Then both transforms are multiplied to obtain  

 

𝑋(𝑧) = 𝑋1(𝑧)𝑋2(𝑧) 

 

as follows: 

 

1 −2𝑧−1 +𝑧−2 
     

1 +𝑧−1 +𝑧−2 +𝑧−3 +𝑧−4 +𝑧−5 
  

1 +𝑧−1 +𝑧−2 +𝑧−3 +𝑧−4 +𝑧−5 
  

 
−2𝑧−1 −2𝑧−2 −2𝑧−3 −2𝑧−4 −2𝑧−5 −2𝑧−6 

 

  
+𝑧−2 +𝑧−3 +𝑧−4 +𝑧−5 +𝑧−6 +𝑧−7 

1 −𝑧−1 +0𝑧−1 +0𝑧−3 +0𝑧−4 +0𝑧−5 −𝑧−6 +𝑧−7 

 

Finally, the convolution sum is obtained as the coefficients 

of 𝑋(𝑧)  

𝑥[𝑛] = [1̂, −1, 0,0,0,0, −1,1] 

 

The tabularized solution obtained from vector 

multiplication and left diagonal addition is shown below. 

 

 1̂ 1 1 1 1 1 𝑥2[𝑘] 

𝑥1[𝑘] 

 1 1 1 1 1 1 1̂ 

1 −2 −2 -2 −2 −2 −2 −2 

−1 1 1 1 1 1 1 1 

𝑥[𝑛] 0 0 0 0 −1 1  

 

𝑥[𝑛] = [1̂, −1, 0,0,0,0, −1,1] 
 

From the examples seen so far one can make an informed 

comparison between the vector multiplication approach and 

the other approaches to calculating the convolution sum, in 

terms of the solutions obtained and the complexities involved. 

 

III. CORRELATION SUM AS VECTOR MULTIPLICATION WITH 

RIGHT DIAGONAL ADDITION 

The correlation of two signals is a measure of how much 

both signals are similar. Continuous time (CT) correlation 

was considered in [1] (pp. 177-182), DT correlation and 

circular correlation in [3] (pp. 430-459), and DT correlation 

in [4] (pp. 116-128). For two signals 𝑦[𝑛], 𝑥[𝑛] both with 

finite energy, the crosscorrelation sequence is 

 

𝑟𝑥𝑦[𝑘] = ∑ 𝑥[𝑚]𝑦[𝑚 − 𝑘]∞
𝑚=−∞ , 𝑘 = 0, ±1, ±2 (3) 

 

or 

𝑟𝑥𝑦[𝑘] = ∑ 𝑥[𝑚 + 𝑘]𝑦[𝑚]

∞

𝑚=−∞

, 𝑘 = 0, ±1, ±2, ⋯ 

 

where 𝑥𝑦 is the cross correlation and 𝑘 is time shift or lag. 

The crosscorrelation inverse inverts the roles of the former 
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sequence 𝑟𝑥𝑦[𝑘] and is given as: 

 

𝑟𝑦𝑥[𝑘] = ∑ 𝑦[𝑚]𝑥[𝑚 − 𝑘]∞
𝑚=−∞ , 𝑘 = 0, ±1, ±2 (4) 

 

or 

𝑟𝑦𝑥[𝑘] = ∑ 𝑦[𝑚 + 𝑘]𝑥[𝑚]

∞

𝑚=−∞

, 𝑘 = 0, ±1, ±2 

 

The vector multiplication with diagonal addition approach 

presented for convolution is extended to correlation. The 

finite sequence example in section II will be repeated here in 

order to show the difference between correlation and 

convolution. The solution applies to the other examples. 

 

A. Finite Sequence Example 

Recall the former finite sequences example of Section II. 

This time, the correlation between ℎ[𝑘] = [1, 2̂, 1, −1] and 

𝑥[𝑘] = [1̂, 2,3,1] is desired. The correlation sum is the 

summation: 

 

𝑟𝑥ℎ[𝑘] = ∑ 𝑥[𝑚]ℎ[𝑚 − 𝑘]

∞

𝑚=−∞

 

From the data 𝑥[𝑘] and ℎ[𝑘], −2 ≤ 𝑘 ≤ 4. And since 𝑥[𝑘] 
is causal the analytical solution is as follows: 

 

𝑟𝑥ℎ[𝑘] = ∑ 𝑥[𝑚]ℎ[𝑚 − 𝑘]

3

𝑚=0

 

 

𝑟𝑥ℎ[−2] = 𝑥[0]ℎ[2] + 𝑥[1]ℎ[3] = −1 

 

𝑟𝑥ℎ[−1] = 𝑥[0]ℎ[1] + 𝑥[1]ℎ[2] + 𝑥[2]ℎ[3] = 1 − 2 = −1 

 

𝑟𝑥ℎ[0] = 𝑥[0]ℎ[0] + 𝑥[1]ℎ[1] + 𝑥[2]ℎ[2] = 2 + 2 − 3 = 1 

 

𝑟𝑥ℎ[1] = 𝑥[0]ℎ[−1] + 𝑥[1]ℎ[0] + 𝑥[2]ℎ[1] + 𝑥[3]ℎ[2] = 7 

 

𝑟𝑥ℎ[2] = 𝑥[1]ℎ[−1] + 𝑥[2]ℎ[0] + 𝑥[3]ℎ[1] = 2 + 6 + 1 = 9 

 

𝑟𝑥ℎ[3] = 𝑥[2]ℎ[−1] + 𝑥[3]ℎ[0] = 3 + 2 = 5 

 

𝑟𝑥ℎ[4] = 𝑥[3]ℎ[−1] = 1 
 

𝑟𝑥ℎ[𝑘] = [−1, −1, 1̂, 7,9,5,1] 

 

 

One can observe that analytical convolution and 

correlation seem to be of the same complexity, but arguably, 

it seems pretty more complex to determine the sequence 

−2 ≤ 𝑘 ≤ 4 for correlation than the −1 ≤ 𝑘 ≤ 5 for 

convolution (which is just obvious from looking at the two 

sequences to be convolved). To determine the sequence for 

correlation, first the two signals are juxtaposed at the 𝑘 = 0 

point. 

 

𝑘  −1 0 1 2 3  

𝑥[𝑘]   1̂ 2 3 1  

ℎ[𝑘]  1 2̂ 1 −1   

 

Then 𝑥[0] and ℎ[2] are aligned to determine how much left 

shifting of ℎ[𝑘] is required (advance). Two shifts were 

required as shown below, so 𝑘 starts at -2. 

 

𝑘  −2 −1 0 1 2 3  

𝑥[𝑘]    1̂ 2 3 1  

ℎ[𝑘] 1 2̂ 1 −1     

 

Finally, 𝑥[3] and ℎ[−1] are aligned to determine how 

much right shifting of ℎ[𝑘] is required (delay). Four shifts 

were required so 𝑘 ends at 4. 

 

𝑘  −2 −1 0 1 2 3 4   

𝑥[𝑘]    1̂ 2 3 1    

ℎ[𝑘]       1 2̂ 1 −1 

 

Next, the vector multiplication approach is extended to 

correlation. The steps follow from the convolution solution, 

the signals to be correlated 𝑥[𝑘], ℎ[𝑘] are represented as row 

vectors. Then the correlation sum is defined as  

 

𝑟𝑥𝑦[𝑘] = ∑ ⋋ [𝑘]ℎ𝑇𝑥∞
𝑘=−∞      (5) 

 

where ∑ ⋋ [𝑘]∞
𝑘=−∞  indicates the right diagonal 

summations of the matrix obtained from ℎ𝑇𝑥. Let 

 

𝑟′ = ℎ𝑇𝑥 

 

Then  

 

𝑟′ = [

1 2 3 1
2 4 6 2
1 2 3 1

−1 −2 −3 −1

] 

 

Taking right diagonal sums of 𝑦′ gives” 

 

𝑟𝑥𝑦[𝑘] = [−1, −1, 1̂, 7, 9, 5,1] 

 

The tabularized vector multiplication solution is shown 

below: 

 
𝑥[𝑘] 

ℎ[𝑘] 
1̂ 2 3 1  

1 1 2 3 1  

2̂ 2 4 6 2 1 

1 1 2 3 1 5 

−1 −1 −2 −3 −1 7 

  −1 −1 1 𝑟𝑥𝑦[𝑘] 

 

Notice that the matrix obtained from vector multiplication 

is the same for both convolution and correlation. The 

difference in solution lies on which direction (left or right) the 

diagonal sums are taken. To determine the 𝑘 = 0 point from 

this method it is still required to follow the procedure listed 

formerly to determine the 𝑘 sequence for each given pair of 

signals. 
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IV. CIRCULAR (PERIODIC) CONVOLUTION 

Circular (periodic) convolution is also an important 

concept in signals and systems. It can also be computed using 

the analytical and graphical approaches. In circular 

convolution, both sequences to be convolved are N-periodic 

and the convolution summation is over one period N. This 

differentiates it from the linear convolution summation which 

can be from −∞ to +∞. Examples of circular convolution 

using the graphical approach are presented in [1] (p. 349-351, 

651-652), [3] (pp. 399-426), [4] (pp. 471-474), and [5] (pp. 

676-687). However, the analytical and graphical solutions 

presented are usually more complex and involving than that 

of linear convolution.  

To illustrate, consider Example 7.2.1 in [4] (p. 472) which 

is as follows. Perform the circular convolution  

 

𝑦[𝑛] = 𝑥1[𝑛] ⊛ 𝑥2[𝑛] 
 

of the following two sequences:  

 

𝑥1[𝑛] = [2̂, 1, 2, 1], 𝑥2[𝑛] = [1̂, 2, 3, 4] 

 

From the above data 𝑁 = 4, and the analytical solution is 

obtained as follows: 

 

𝑦[𝑛] = ∑ 𝑥1[𝑘]𝑥2 [((𝑛 − 𝑘))
𝑁

]

3

𝑘=0

, 0 ≤ 𝑛 ≤ 3 

 

𝑦[0] = 𝑥1[0]𝑥2 [((0))
4
] + 𝑥1[1]𝑥2 [((−1))

4
] + 𝑥1[2]𝑥2 [((−2))

4
]

+ 𝑥1[3]𝑥2 [((−3))
4

] 

 

= 2 × 1 + 1 × 4 + 2 × 3 + 1 × 2 = 14 

𝑦[1] = 2𝑥2 [((1))
4
] + 𝑥2 [((0))

4
] + 2𝑥2 [((−1))

4
] + 𝑥2 [((−2))

4
]   

= 2 × 2 + 1 × 1 + 2 × 4 + 1 × 3 = 16  
 

𝑦[2] = 2𝑥2 [((2))
4
] + 𝑥2 [((1))

4
] + 2𝑥2 [((0))

4
] + 𝑥2 [((−1))

4
] 

= 2 × 3 + 1 × 2 + 2 × 1 + 1 × 4 = 14  
 

𝑦[3] = 2𝑥2 [((3))
4
] + 𝑥2 [((2))

4
] + 2𝑥2 [((1))

4
] + 𝑥2 [((0))

4
] 

= 2 × 4 + 1 × 3 + 2 × 2 + 1 × 1 = 16 

 

𝑦[𝑛] = {14̂,  16,14,16} 

 

One may appreciate the added complexity of this solution 

in comparison to analytical linear convolution. In the above 

solution, even the part of determining the circular shifting 

𝑥2 [((𝑛 − 𝑘))
𝑁

] ,  0 ≤ 𝑛 ≤ 3 is not shown. 

The graphical solution is presented in [4] (p. 473) using a 

series of circular discs to illustrate the concept of circular 

shifting. From observation of the series of circles in the 

solution in [4], the required circular shifting may be 

represented using one disc as shown below” 

 

 
Fig. 2. Circular shifting requires one clockwise pass from 𝑥2[3] to 𝑥2[0] 

followed by another clockwise pass from 𝑥2[−1] to 𝑥2[−3]. The sequence 

𝑥2 [((𝑛 − 𝑘))
𝑁

] is 4,3,2,1,4,3,2. 

Let 𝑥2 [((𝑛 − 𝑘))
𝑁

] be represented as 𝑥2
∗[𝑛] Then, the 

vector multiplication solution is presented as follows: 

 

𝑛 𝟑 𝟐 𝟏 𝟎 −1 −2 −3  

          𝑥2
∗[𝑛] 

𝑥1[𝑛] 
4 3 2 1 4 3 2  

2 8 6 4 2 8 6 4  

1 4 3 2 1 4 3 2  

2 8 6 4 2 8 6 4  

1 4 3 2 1 4 3 2 𝟏𝟒 

     𝟏𝟔 𝟏𝟒 𝟏𝟔 𝑦[𝑛] 

 

𝑦[𝑛] = {14̂,  16,14,16} 

 

In addition, it does not matter which direction the circular 

shifting is made. One can as well make one anticlockwise 

pass from 𝑥2[−3] to 𝑥2[0] followed by another anticlockwise 

pass from 𝑥2[1] to 𝑥2[3]. In this case 𝑥1[𝑛] is also taken 

anticlockwise. Then the vector multiplication is as follows” 

 
𝑛 −𝟑 −𝟐 −𝟏 𝟎 1 2 3  

          𝑥2
∗[𝑛] 

𝑥1[𝑛] 
2 3 4 1 2 3 4  

1 2  3 4 1 2 3 4  

2 4 6 8 2 4 6 8  

1 2 3 4 1 2 3 4  

2 4 6 8 2 4 6 8 𝟏𝟔 

     𝟏𝟒 𝟏𝟔 𝟏𝟒 𝑦[𝑛] 

 

The solution is also taken in reverse as: 

 

𝑦[𝑛] = {14̂,  16,14,16} 

 

V. COMMUTATIVITY TEST OF CONVOLUTION AND 

CORRELATION 

A main property that differentiates convolution from 

correlation is that convolution is commutative, i.e. 

 

𝑦[𝑘] = 𝑥[𝑘] ∗ ℎ[𝑘] = 𝑥[𝑘] ∗ ℎ[𝑘] 

⟹ ∑ 𝑥[𝑚]

∞

𝑚=−∞

ℎ[𝑘 − 𝑚] = ∑ ℎ[𝑚]

∞

𝑚=−∞

𝑥[𝑘 − 𝑚] 

 

However, correlation is not, i.e. 

 

𝑟𝑥𝑦[𝑘] ≠ 𝑟𝑦𝑥[𝑘] 

 

The commutativity of convolution can be demonstrated by 
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using the vector multiplication method presented here.  

 

𝑦[𝑘] = ∑ ⋌ [𝑘]𝑥𝑇ℎ

∞

𝑘=−∞

= ∑ ⋌ [𝑘]ℎ𝑇𝑥

∞

𝑘=−∞

 

 

Let  

 

𝑦1
′ = ℎ𝑇𝑥, 𝑦2

′ = 𝑥𝑇ℎ 

 

Then  

 

𝑦2
′ = (𝑦1

′ )𝑇 

 

𝑦1
′ = [

1 2 3 1
2 4 6 2
1 2 3 1

−1 −2 −3 −1

] , 𝑦2
′ = [

1 2 1 −1
2 4 2 −2
3 6 3 −3
1 2 1 −1

] 

 

and  

 

𝑦[𝑘] = 𝑦1[𝑘] = 𝑦2[𝑘] = [1, 4̂, 8, 8,3, −2, −1] 

 

To show that correlation is not commutative: 

 

𝑟𝑥𝑦[𝑘] = ∑ ⋋ [𝑘]ℎ𝑇𝑥

∞

𝑘=−∞

 

 

𝑟𝑦𝑥[𝑘] = ∑ ⋋ [𝑘]𝑥𝑇ℎ

∞

𝑘=−∞

 

 

Let 

 

𝑟1
′ = [

1 2 3 1
2 4 6 2
1 2 3 1

−1 −2 −3 −1

] , 𝑟2
′ = 𝑥𝑇ℎ = [

1 2 1 −1
2 4 2 −2
3 6 3 −3
1 2 1 −1

] 

 

Then 

 

𝑟𝑥𝑦[𝑘] = [−1, −1, 1̂, 7, 9, 5,1] 

 

𝑟𝑦𝑥[𝑘] = [1,5,9,7, 1̂, −1, −1] = 𝑟𝑥𝑦[−𝑘] ≠ 𝑟𝑥𝑦[𝑘] 

 

VI. CONCLUSION 

The paper presented a unified vector multiplication with 

diagonal summation approach for calculating convolution 

and correlation of finite sequences. The paper is basically a 

theoretical analysis of the regular DT convolution. 

Also, it is shown that for finite sequences, it does not 

require the Z-transform to reduce the convolution sum to a 

multiplication problem, rather, vector multiplication can be 

done directly without the Z-transform, thereby reducing 

complexity because it involves much fewer steps. 

The approach presented here provides additional tools to 

adopt for practice. Future work may include investigating 

other simplified methods of solving convolution and 

correlation problems by hand. Investigating the 

computational complexities of the different approaches can 

also be considered. 
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