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Abstract — This paper is devoted to study the buckling 

response of axially compressed rectangular thick plate based on 

the exact polynomial potential functional. The governing and 

equilibrium equation of an isotropic plate was derived based on 

the three-dimensional (3-D) static theory of elasticity, to get the 

relations between the rotations and deflection. These equations 

are solved in the form of polynomial analytically to obtain the 

exact displacements and stresses that are induced due to 

uniaxial compressive load action on the plate. By incorporating 

deflection and rotation function into the fundamental equation 

and minimized with respect to deflection coefficient, a new 

expression of the determination of the critical buckling load was 

established. This expression was applied to solve the buckling 

problem of a clamped thick rectangular plate which was simply 

supported at the first and freely supported at the third edge 

(SCFC). A graphic representation of results showed that, as the 

aspect ratio of the plate increases, the value of critical buckling 

load decreases while as critical buckling load increases as the 

length to breadth ratio increases. This implies that an increase 

in plate width increases the chance of failure in a plate structure. 

This theory obviates the numerical approximations in the 

thickness direction thereby guaranteed accuracy in the solution 

of the displacement along the direction of thickness axis of the 

plate, hence, a significant lessening of the cost of computation. 

 
Key words — Exact displacement and stress, buckling load, 

three-dimensional (3-D) static theory of elasticity, SCFC thick 

rectangular plate.  

 

I. INTRODUCTION  

Basic three-dimensional structural elements with plane and 

straight surfaces whose thickness is geometrically small 

compared to other dimensions known as plates [1]; Have an 

increased research interest among engineers and scientists as 

they are widely applied in the construction of ships, railways, 

bridges, aerospace, mechanical and structural engineering 

[2], [3] due to their cost benefits, high strength, lightweight 

and load resistance properties [4].  

With respect to varying applications, plates could be 

laminated, homogeneous or functionally graded materials 

with different sizes, thicknesses, and shapes. Considering 

edge conditions, plates can be clamped, simply supported, 

and of free boundary conditions [5], based on shape as: 

elliptical, triangular, skew plates, square, circular, and 

rectangular, also based on material composition as: 

anisotropic and isotropic plates. Depending on depth, plates 

have been classified as thin, thick, or moderately thick [6]-
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[8]. Furthermore, [9]-[11] has defined rectangular plates with 

50 ≤ a/t ≤ 100 as thin plate, 20 ≤ a/t ≤ 50 as moderately thick 

and a/t ≤ 20 as thick plate where a/t is the span-to-depth ratio. 

The significance and large application of thick plates has 

attracted more researchers to investigate its potency for most 

engineering applications. Areas of investigation include 

bending, vibration and buckling [12]. Thicker plates are 

frequently exposed to normal, shearing, and compressive 

loads acting in the center plane of the plate. Plate buckling 

can occur under certain load conditions. Buckling is a 

phenomenon where at a critical compressive load value, a 

material under the influence of in-plane compressive loads 

moves stable to unstable state of equilibrium. To avoid 

premature catastrophic structural failures, determining the 

buckling abilities of plates is of considerable practical 

significance.  

Classical plate theory (CPT), first order shear deformation 

plate theory (FSDT) [10], and the higher order shear 

deformation plate theories (HSDT) [11], have been 

developed and applied by several researchers to solve plate 

problems such as buckling. However, the Kirchhoff classical 

plate theory [13] gives accurate results for the buckling of 

thin plates only as a result of the neglected transverse shear 

deformation. In thick plates, the transverse shear deformation 

is strongly marked. Mindlin [14] considered the effect of 

transverse shear deformation in the first order shear 

deformation theory that is displacement based but shear 

correction factor was required. In order to compensate for the 

deficiencies of the classical plate theory and first order shear 

deformation theory, higher order shear deformation theories 

(HSDTs) were developed. Without the shear correction 

factor, the HSDTs provides a shear stress condition that is 

zero at the upper and bottom part of the plate. Although 

HSDTs are suitable for thick plate analysis, they can’t give 

accurate result of typical three-dimensional plate analysis. To 

obtain an exact solution for a three-dimensional plate 

analysis, 3D theory is required; hence this research work is 

needful.  

To study the buckling behavior of thick plates, the 

equilibrium, numerical, or energy methods can be employed. 

Equilibrium method, also known as Euler method, adds up all 

the loads acting on a continuum to zero and obtains the 

governing differential equation solution by integrating 

directly and fulfilling the boundary conditions of the four 

edges of the plate. The outcome of numerical methods is 
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approximate numerical solutions of the plate problem. This 

method consists of boundary element methods, finite strip 

methods, truncated double Fourier series and finite difference 

methods [15]. This method consumes more time and 

numerous works have to be done in order to get an exact 

solution. 

Energy method is completely different from equilibrium 

and numerical approaches as it sums all the strain energy and 

potential energy or external work on the continuum to be 

same with total potential energy [16]. To obtain the stability 

matrix, the total potential energy function is minimized. In 

this study, a unified approach (equilibrium-energy) is 

employed.  

Onyeka et al. [17] applied variational energy method to 

analyze the buckling of a thick CSSS plate under uniaxial 

compressive load with a new trigonometric shear deformation 

plate theory. For the formulation of the energy equation, there 

was no need for shear correction factors and unlike refined 

plate theories, the new theory developed for the analysis 

considered all the stress elements of the plate. However, the 

authors did not employ polynomial displacement function 

and SCFC boundary condition was not considered. 

A refined trigonometric shear deformation theory was 

developed by Gunjal et al. [18] to investigate the buckling of 

simply supported isotropic rectangular plate under uniaxial 

and biaxial compression. The virtual work principle was 

employed to obtain the governing equations and boundary 

conditions of the theory. Neglecting the use of shear 

correction factor, the shear stresses free conditions at the plate 

surfaces were satisfied by the theory. The authors did not 

consider a typical 3D plate theory for their analysis and a 

thick plate with the SCFC boundary condition was not taken 

into account.  

Both polynomial, and trigonometric functions with an 

energy method was employed by Onyeka et al. [19] to obtain 

the buckling solution on a thick plate with all edges clamped. 

The authors formulated the total potential energy equation 

from 3D constitutive relations and to obtain the relations 

between the deflections and shear deformation rotation along 

the direction of x and y coordinates, the compatibility 

equations were established. The authors did not consider 

plates with SCFC edge condition and equilibrium-energy 

approach as in this present study.  

Applying the alternative II theory based on polynomial 

shape function, Ibearugbulem et al. [20] evaluated the 

stability of thick plates using energy approach. The authors 

combined the strain energy and external work to obtain the 

total potential energy which was reduced to the governing 

equations. To get the critical buckling load, the authors 

substituted the polynomial function into the governing 

equation and the results obtained was compared with those of 

first order shear deformation theory. However, the theory 

considered by the authors is an incomplete 3D approach 

because it neglects all the stress and strain along the thickness 

direction of the plate and this negligence do not allow for the 

full estimation of the plate buckling load. Also plates with the 

SCFC support condition was not addressed.  

Sayyad and Ghugal [21] employed shear exponential 

deformation theory to analyze the buckling of thick plates 

subjected to biaxial and uniaxial in-plane forces. The 

polynomial displacement function was not taken into 

consideration. Ibeabuchi et al. [22] used work principal 

approach to investigate the buckling of uniaxially compressed 

plate elastically restrained in all directions. With polynomial 

displacement function, the authors obtained the buckling 

coefficients of the plate and developed a numerical model. 

The assumption made in their study is limited to classical 

plate theory. Onah et al. [23] applied single Fourier sine 

transformation approach to obtain the solution for Kirchhoff 

CCSS rectangular plate buckling. Their study can only 

predict buckling load of thin or moderately thick plates 

because there was consideration for the plate’s thickness. The 

study in [21]-[23] did not cover thick plates with the SCFC 

boundary condition or used an exact three-dimensional plate 

theory in their analysis.  

With displacement potential function approach, Vareki et 

al. [24], Uymaz et al. [25] Singh et al. [26] and Lee [27] 

obtained the buckling solution of simply supported thick 

plates. The 3D plate theory was not employed, and the 

displacement function applied were not a derivative of the 

compatibility equation. Both authors did not incorporate the 

equilibrium approach in their energy method and SCFC 

plate’s boundary condition were not also considered.  

With an exact solution approach, Onyeka et al. [28] 

analyzed the stability of a thick plate that is simply supported 

at the first and fourth edges, clamped and freely supported in 

the second and third edge respectively (SCFS). The authors’ 

exact formulation of the potential energy equation was 

obtained from the compatibility equation to get a close form 

solution of the polynomial and trigonometric displacement 

functions. Also, the study carried out by Onyeka et al. [29] to 

investigate the stability of all edges simply supported (SSSS) 

thick plates confirmed that exact 3-D plate theory using 

polynomial and trigonometric displacement function gives a 

good solution. Although a typical 3-D thick plate was covered 

in their analysis, they did not address a thick plate that is 

simply supported and free at the first, third edge and clamped 

at the second and fourth edge (SCFC).  

From the previous studies reviewed, it is found that the 

boundary condition of the plate in this present study has not 

been considered for buckling analysis, and not much has been 

done with 3-D plate theory, which consists of all the six 

strains and stress components that is required for a typical 

thick plate analysis. This gap in the literature is worth filling. 

This study is aimed at bridging the gap in literature by 

developing a new polynomial displacement function and 

applying it in the exact three-dimensional stability analysis of 

isotropic thick rectangular plate subjected to an in-plane 

loading. The main objective of this study is to formulate a 

realistic formula for calculating the critical buckling load of 

thick rectangular plate simply supported at one edge, free at 

one edge and clamped at the two outer edges (SCFC) under 

uniaxial compressive load, using fourth order polynomial 

displacement function and equilibrium-energy approach. 

II. METHODOLOGY 

A. Potential Energy Equation Formulation 

The energy equation for an axially loaded rectangular thick 

plate is formulated by considering a thick plate assumption, 

with the x-z section and y-z section, which are initially 

normal to the x-y plane before bending off the normal to the 
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x-y plane after bending of the plate as shown in the section of 

plate presented in the Fig. 1. 

 
Fig 1. The displacement of section x-z or y-z of the plate. 

 

The non-dimensional total potential energy [П] expression 

for an elastic three-dimensional plate theory of R and Q 

coordinates at the span-thickness aspect ratio (a/t) is in line 

with [17] and presented as: 

 


= D∗
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given that 𝐷∗ is the Rigidity for 3-D thick plate, let 

 

𝐷∗ = 𝐷 
(1 − 𝜇)

(1 − 2𝜇)
 

 

where 𝐷 is the Rigidity of the CPT or incomplete 3-D thick 

plate, let  𝑁𝑥 , , 𝑤, 𝜃𝑆𝑥, and 𝜃𝑆𝑦 are the uniform applied 

uniaxial compression load of the plate, the poison ratio, 

deflection , shear deformation rotation along x axis and shear 

deformation rotation along y axis respectively. 

B. Compatibility Equation 

The true compatibility equations in x-z plane and y-z plane 

according to [19] is obtained by minimizing the energy 

equation with respect to rotation in x-z plane and rotation in 

y-z plane and equate its integrands to zero to get: 
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Using the law of addition, (2) and (3) will be simplified, 

then factorizing the outcome gives: 
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After simplification using law of addition, one of the 

possible of equation becomes: 
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C. General Governing Equations 

The minimization of energy equation with respect to 

deflection gives the general governing equation as presented 

in [29]: 
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Substituting (6) into (7) and simplifying the outcome gives 

two governing differential equations of a 3-D rectangular 

plate subject to pure buckling as presented in (8) and (9): 
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Thus, the polynomial expression for deflection derived 

from (8) according to Onyeka et al. [30] is presented in (10) 

as: 

 

w = ∆0 (𝑎0 +  𝑎1𝑅 + 𝑎2𝑅
2 + 𝑎3𝑅

3 + 𝑎4𝑅
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4)                                          (10)  

 

Equation (10) can be re-written in line with the work of 

Onyeka et al. [30] as: 

 
𝑤 = 𝐴1ℎ                                                                                   (11) 

 

where: 
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ℎ = [1  𝑅 𝑅2 𝑅3  𝑅4]. [1  𝑄 𝑄2 𝑄3 𝑄4]                              (13) 
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Given that: ℎ is the shape function of the plate, 𝐴1 is the 

coefficient of deflection  𝐴2 and 𝐴3 are the coefficients of 

shear deformation in x axis and y axis respectively. 

D. Direct Governing Equations 

By substituting (11), (14) and (15) into (1), the Energy 

equation becomes: 
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Differentiating (17) with respect to shear deformation 

coefficient (𝐴2 and 𝐴3), and solve simultaneously gives: 
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Differentiating (16) with respect to deflection coefficient 

(A1) and simplifying the outcome, an expression for the 

critical buckling load (Nxcr) is established as: 
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where 

𝐷 is the modulus of Rigidity and β represents the ratio of 

length and breadth of the plate. 

E. Numerical Analysis 

A buckling problem of a clamped thick rectangular plate 

which was simply supported at the first and freely supported 

at the third edge (SCFC) and subjected to a uniaxial 

compressive loading is considered as presented in Fig. 2. A 

polynomial displacement function which was in equation 10 

and applied to determine the value of the critical buckling 

load of the plate.  

 

 
Fig 2. SCFC rectangular plate subjected to uniaxial compressive load.  

 

The boundary conditions of the plate in Fig. 2 are as 

follows: 

 

R – Direction: 

 

(a) When R = 0, deflection (w) = 0.      (24) 
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(b) When R = 0, slope (w’) = 0, (𝑖𝑒.
𝑑𝑤

𝑑𝑅
= 0)                 (25) 

 

(c) When R = 1, deflection (w) = 0.     (26) 

 

(d) When R = 1, slope (w’) = 0, (𝑖𝑒.
𝑑𝑤

𝑑𝑅
= 0)                 (27) 

 

Q – Direction 

 

(e) When Q = 0, deflection (w) = 0.      (28) 

 

(f) When Q = 0, bending moment = 0, (𝑖𝑒.
𝑑2𝑤

𝑑𝑄2 = 0)    (29) 

 

(g) When Q = 1, bending moment = 0, (𝑖𝑒.
𝑑2𝑤

𝑑𝑄2 = 0)   (30)  

 

(h) When Q = 1, shear force = 0, (𝑖𝑒.
𝑑3𝑤

𝑑𝑄3 = 0)              (31) 

 

(i) When Q = 1, slope (w’) =
2

3𝑏5
, (𝑖𝑒.

𝑑𝑤

𝑑𝑄
=

2

3𝑏5
)             (32) 

 

Substituting (24) to (32) into the derivatives of w and 

solving gave the characteristic equations with the following 

constants: 

Substituting equation (24) to (32) into the derivatives of w 

and solving gave the characteristic equations with the 

following constants: 

 
𝑎0 = 0; 𝑎1 = 0; 𝑎2 = 2𝑎4;  𝑎3 = −2𝑎4                         (33) 

 

and 

 

𝑏0 = 0; 𝑏1 = −
7

3
𝑏5;  𝑏2 = 0; 𝑏3 = −

10𝑏5

3
; 

 𝑏4 = −
10𝑏5

3
                                                                         (34) 

Substituting the constants of (33) and (34) into (10) gives: 

 
𝑤 = (𝑅2 − 2𝑅3 + 𝑅4). (7𝑄 − 10𝑄3 + 10𝑄4 − 3𝑄5) (35) 

 

Simplifying (35) which satisfying the boundary conditions 

of (24) to (28) gives: 

 

𝑤 = 𝑎4(𝑅
2 − 2𝑅3 + 𝑅4). 𝑏5 (

7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5) (36) 

 

That is: 

 

𝑤 = 𝑎4. 𝑏5(𝑅
2 − 2𝑅3 + 𝑅4). (

7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5) (37) 

 

where 

 
𝐴1 = 𝑎4 × 𝑏5                                                                          (38) 

and 

   

ℎ = (𝑅2 − 2𝑅3 + 𝑅4). (
7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5) (39) 

 

Thus, the polynomial deflection functions after satisfying 

the boundary conditions is: 

  

𝑤 = (𝑅2 − 2𝑅3 + 𝑅4) (
7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5) . 𝐴1(40) 

 

As such, a numerical values of the stiffness for a SCFS 

plate were obtained using (24) to (32) by applying the 

polynomial function as obtained in (39) and their results are 

presented in Table I. 

 
𝑘𝑅𝑅 = 0.6709; 𝑘𝑅𝑄 = 0.0405; 𝑘𝑄𝑄 = 0.0060; 

 𝑘𝑅 = 0.0160; 𝑘𝑄 = 0.0034 

 

III. RESULTS AND DISCUSSIONS 

In this section, a numerical value of the buckling load 

expression obtained in in the previous section is presented. 

The non-dimensional value of the critical buckling load for a 

clamped thick rectangular plate which was simply supported 

at the first and freely supported at the third edge (SCFC) and 

subjected to a uniaxial compressive load at varying aspect 

ratio is presented in Fig. 3 to Fig. 12. This result was obtained 

by expressing the shape function of the plate in the form of 

polynomial to obtain the critical buckling load of the plate. A 

numerical and graphical representation was presented in Fig. 

3 to 7 to show the behavior of the element a thick plate’s 

stability at varying thickness and aspect ratio. 

The values obtained in Fig. 3 to 7, shows that as the values 

of critical buckling load increase, the span- thickness ratio 

increases. This reveals that as the in-plane load on the plate 

increase and approaches the critical buckling, the failure in a 

plate structure is a bound to occur; this means that a decrease 

in the thickness of the plate, increases the chance of failure in 

a plate structure. Hence, failure tendency in the plate structure 

can be mitigated by increasing its thickness. 

It is also observed in the tables that as the aspect ratio of 

the plate increases, the value of critical buckling load 

decreases while as critical buckling load increases as the 

length to breadth ratio increases. This implies that an increase 

in plate width increases the chance of failure in a plate 

structure. It can be deduced that as the in-plane load which 

will cause the plate to fail by compression increases from zero 

to critical buckling load, the buckling of the plate exceeds 

specified elastic limit thereby causing failure in the plate 

structure. This meant that, the load that causes the plate to 

deform also causes the plate material to buckle 

simultaneously.  

The result of the present model which analyzed all the 

stress elements in the plate is considered safer to use to 

achieve an exact three-dimensional plate analysis using 

polynomial displacement functions, hence, provides accurate 

or reliable solution in the analysis of a rectangular plate under 

SCFS boundary condition. Thus, the present theory obviates 

the numerical approximations in the thickness direction 

thereby guaranteed accuracy in the solution of the 

displacement along the direction of the thickness axis of the 

plate, hence, a significant lessening of the cost of 

computation. 
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Fig. 3. Critical buckling load (Nx) versus span to thickness ratio (a/t) 

of a square rectangular plate. 
 

 
Fig. 4. Critical buckling load (Nx) versus span to thickness ratio (a/t) 

of a rectangular plate with aspect ratio of 1.5. 
 

 
Fig. 5. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 2.0. 
 

 
Fig. 6. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 2.5. 

 
Fig. 7. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 3.0. 

 

 
Fig. 8. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 3.5. 

 
Fig. 9. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 4.0. 

 

 
Fig. 10. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 4.5. 
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Fig. 11. Critical buckling load (Nx) versus span to thickness ratio (a/t) of a 

rectangular plate with aspect ratio of 5.0. 

IV. CONCLUSION 

From the result of the analysis of this study, it can be 

concluded that an increase in plate width increases the chance 

of failure in a plate structure while the increase in the plate 

thickness ensures safety in the plate structure subjected to 

uniaxial compression. Furthermore, it is shown that as the in-

plane load which will cause the plate to fail by compression 

increases from zero to critical buckling load, the buckling of 

the plate exceeds specified elastic limit thereby causing 

failure in the plate structure. More, so, the polynomial 

displacement function developed to give a close form 

solution, thereby considered more accurate and safer for 

complete exact three-dimensional thick plate analysis than 

the polynomial. Its use in the analysis of thick plates will yield 

almost an exact result. Thus, proof that the 3-D plate theory 

provides a reliable solution in the stability analysis of plates 

and can be recommended for analysis of any type of 

rectangular plate under support condition and load 

configuration. 
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