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Abstract — In this work, relevant literature with regards to 

energy management strategies was reviewed and discussed. 

The energy management strategies were grouped into 

forecast/historical, heuristic logic, ANN-fuzzy logic, and 

reinforcement learning (machine learning) based methods. 

From the literature, it is clear that energy management 

strategies are imperative if the optimal operation of hybrid 

energy storage systems and assets is to adequately counteract 

uncertainty due to intermittent renewable energy sources. The 

Reinforcement learning-based algorithm which uses an agent-

based approach to optimally control the system offers an 

optimal solution for energy management. 

 
Keywords — Control; Energy management; Hybrid Energy 

storage systems; Optimisation; Reinforcement learning.  

 

I. INTRODUCTION  

Hybrid energy storage systems are simply the 

combination of complementary heterogenous energy storage 

technologies. The heterogeneity of the ESs technology, 

which portends certain benefits (such as prolonged lifetime 

and energy reliability of the assets) when exploited, imposes 

the need for a more evolved energy management strategy 

(EMS) at the system level in contrast to a conventional EMS 

suitable for a homogeneous ESs [1]. Despite the benefits, 

HESS foretells, such as an better reliability and energy 

uncertainty mitigation, if the system’s design (including 

inter-dependencies) is not adequately considered a 

performance improvement cannot be guaranteed compared 

to homogeneous ESs.  

Therefore, an EMS which can orchestrate the most vital 

decision-making process is required for the optimal 

operation of HESS. The EMS must control and coordinate 

the systematic distribution of energy amongst the 

heterogeneous energy storages with regards to dis/charging 

schedules while serving the load demand [1]. 

This paper seeks to concisely present a summary of 

existing EMSs for HESS in order to serve as informative 

literature for researchers. 
 

II. LITERATURE REVIEW ON EMS FOR HESS 

In this paper, several EMS for optimal control and 

decision-making have been investigated, especially to 

negate the effects of energy resources uncertainty in HESS. 

These approaches range from the use of historical data to 

better improve the forecast of RE energy to dynamic expert 

rule-based intervention strategies.  
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A. Forecast/Historical based Energy Management 

Strategies 

The work presented in [2] employed game theory for the 

first time in an adaptive model predictive framework for 

demand-side response management in a grid-connected RE 

network and shows superiority over the day ahead scheme 

when forecasting error is significantly large (>10%). In [3] 

to achieve an accurate DA forecast, learning tools; self-

organising map (SOM) and Learning vector quantisation 

(LVQ) are combined and used to classify historical PV 

power, and weather data patterns for training by Support 

vector regression (SVR), a Bayesian machine learning 

method. During the classification, the historical data is 

loaded as an input vector, representing the pattern of the 

hourly PV power generation. A minimisation of the 

Euclidean norm is used to adjust the weight of the selected 

neuron during the classification with a learning rate. The 

SVR consists of 5 SVR models and 6 sub-models each 

having 5 inputs and 3 outputs. The input data correspond to 

weather elements such as precipitation, temperature, and 

solar irradiance. The SVR machine learning is a technique 

that is selected based on its proven forecasting accuracy and 

learning competency. After that, a fuzzy logic inference 

system was utilised as an intermediary switch for mapping 

any given input to output via the learned models for 

forecasting. 

In [4], an adaptive model predictive control (MPC) is 

used to negate the effects caused by forecast uncertainties 

for optimal operation in a smart residential microgrid. The 

Microgrid comprised both Renewable/non-Renewable 

energy resources such as PV solar panels and WTS, as well 

as combined heat and power (CHP) as well as energy 

storage such as batteries and water tanks. A mixed-integer 

programming optimisation technique is used iteratively at 

each sampling time to minimise a cost function, formulated 

using a day’s short-term forecast of solar radiation wind, 

load demands, and electricity price. The optimal solution is 

derived using feasible power balance constraints on the MG 

for the thermal, electricity supply, and demand-side energy 

capacity. The adaptive MPC which combined a receding 

horizon and forecast error compensation showed superiority 

with a lower cost of operation, compared to the Day-ahead 

programming technique. This is chiefly due to a lack of state 

feedback and correction while using the rolling horizon 

optimisation method. Additionally, the erroneous forecast is 

modelled as a deviation from the actual forecast trajectory 

by summing the actual forecast and a Gaussian noise 

distribution for all-time. Furthermore, work done in [5] 

concerning sensitivity analysis reinforced the superiority of 

the recursive MPC over the Day-ahead strategy 

implemented in the residential MG home energy 

management system. In [6] a review work on optimal 
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control techniques, mixed-integer linear programming 

(MILP) an optimisation technique that makes use of both 

binary or integer values, as well as non-integer values for 

selected variables, is utilised. A centralised controller 

integrating load and generation forecasting via two days 

ahead neural network is used to proffer an online trajectory 

for the system sub-components, users, and water flow while 

guaranteeing minimal operating cost and power balance 

over time [7]. 

In [8] a nonlinear model predictive control (NMPC) 

algorithm is used on a standalone Microgrid for load 

shedding and optimal control of voltage stability within the 

acceptable ±5% deviation recommended by the ANSI C8.1-

1989 standard while balancing the energy in the Microgrid. 

The NMPC algorithm performs a binary type continuous 

optimisation (mixed-integer nonlinear programming) for an 

optimal decision concerning load dispatch based on 

predicted power imbalance. In [9], the thermal overload 

limits of a transmission line were considered and 

incorporated into a linearised AC loss transmission network 

model for more realistic handling of voltage magnitude and 

reactive power in an adaptive MPC framework. The 

constraints for the optimisation problem are selectively 

made minimal to improve the incurred unacceptable 

polynomial-time caused by the high dimension of the 

problem. 

In [10] an adaptive intelligence technique (AIT) for EMS 

a battery (BAT) – ultracapacitor (UC) based HESS was 

proposed to maximise self-consumption while minimising 

the effects of forecast error which consequently impact the 

deviation of load shaving and the corresponding threshold 

for dispatchable power. The AIT method, after computing 

techno-economic feasible fixed power and energy 

thresholds, incorporates robustness to forecast error by 

updating these fixed thresholds at every iteration with 

information derived from the previous day’s optimal trend. 

Thus, AIT which did not require an accurate RES and Load 

data was shown to have superior performance over the PSO 

algorithm. However, a limitation is that the AIT algorithm 

depends on the averaging method which requires a fixed 

number of samples to determine the energy state of charge 

in the battery and only the UC will function as energy 

storage if this condition is not met. The AIT method 

guaranteed high self-consumption and mitigated potential 

reverse power dynamics amongst RES, load, and ESs assets. 

In [11], an ANN architecture is used for prediction and to 

realise a feed-forward control, and a conventional state of 

charge energy management strategy which uses feed-

forward control was compared. Furthermore, the authors, 

through a cost function sensitivity analysis showed that in 

HESS, the key contributors to the total asset’s cost are the 

battery and hydrogen assets. Also, the fractional cost of 

combining hydrogen–battery technologies, was 48% and 9% 

compared with hydrogen or battery-only system 

respectively. In [12], to control the deviation in dc-link 

voltage arising from the variable load and RES uncertainty 

in a grid-connected HESS MG which comprised a BAT and 

ultra-capacitor, a dynamic EMS was proposed. In [13] a 

multivariate quadratic optimisation was formulated to solve 

a real-time optimal control energy management operational 

task relating to a dual-mode split HEV. An offline approach 

is used to solve the multivariate quadratic optimisation 

problem to obtain the control decision, which is thereafter, 

imposed on the HEV in real-time as in a traditional MPC 

fashion. The method which was compared to a traditional 

MPC approach achieved 97.46% computational efficiency 

and 23.3% in fuel savings. In HESS the concept of 

hybridisation is even so very often harnessed especially in 

electrical vehicles (EV), where a super-capacitor (SC) with 

high efficiency and power density properties is combined 

with a conventional battery which lacks such properties but 

has a relatively lower cost and a high energy density which 

the SC lacks. Hence, the exploitation of the SC and Battery 

in a complementary mode enhances the life cycle of the 

battery at a lower design cost.  

B. Heuristic Logic-based Method with Forecast 

Prediction 

An energy management power regulation system was 

proposed in [14] for a standalone HESS comprising WTS, 

PV FC, EL, BAT, and Load. The proposed logic-based EMS 

employed three stages to guarantee the continuous operation 

of the HESS. The first stage involved predicting the wind 

speed and load demand profile. In the second stage, the 

predicted variables and the available energy in the ES are 

used to estimate and schedule the maximum load demand, 

which can be supplied. After that, in the third stage, each 

subsystem was coordinated with eight dynamic operation 

modes generated based on the predicted variables and 

parameters associated with the net power flow and the 

intrinsic limitations of the subsystem. The allowable range 

for the SOC of the ES during an emergency and normal 

operation was 40–95% and 75–95%, respectively. ESs are 

generally categorised based on specific characteristics of 

interest such as high energy and power density, and life 

cycle ramp rate. Regrettably, no one ES has all these 

characteristics of interest. Thus, while ESs are generally 

suited for mitigating generation and consumption 

mismatches in a DC MG, their practicality and performance, 

will perhaps largely depends on their characteristics and the 

dynamics of the mismatch [15]. 

C. ANN-Fuzzy Optimisation 

In [16] an expert energy management system based on an 

artificial neural network was proposed for grid-connected 

hybrid energy storage systems, specifically integrating 

WTS, ES, and several DERS. The framework presented 

consisted of three stages; the first trained an ANN with 

historical data to forecast wind speed within a probabilistic 

error confidence interval to incorporate robustness in the 

prediction. Hence, negating the difficulty imposed by wind 

speed uncertainty in energy scheduling and optimal 

operation of the assets. Secondly, a modified bacteria 

Foraging Optimisation (MBFO) technique was used to 

minimise cost and emission objectives. Thirdly, an 

interactive Fuzzy satisfying approach was simulated to 

resolve the trade-off between the multi-objectives. 

In [17], Artificial intelligence AI (ANN and FLC) based 

energy management techniques were used to optimise the 

efficiency and operation of hybrid power systems, HPS. The 

HPS consisted of both primary RESs such as PV and WTS, 

and backup sources such as FC and Gas micro-turbine. 
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Furthermore, the study underscored the role and importance 

of Hydrogen as a long-term ES employed to buffer RESs 

intermittency. In addition, hydrogen is considered a clean 

renewable energy carrier that may perhaps be transformed 

into various forms such as liquid, gaseous, or metal hydride 

for convenient storage or use. 

D. Reinforcement Learning-based Energy Management 

Strategy 

Research on temporal difference (TD) learning, an 

experience-based technique acquired by investigating and 

exploiting, was suggested for predictive decision making for 

unknown systems in [18]. This was in contrast to the 

traditional method, which relied solely on the difference 

between the actual and expected outcomes.  

In [16], a novel Markov decision process technique is 

proposed for solving the prioritised discharging problem in a 

HESS with two energy storages (ESs): a 22KWh Lead Acid 

(LA) and 20 KWh Vanadium (VR) battery system linked 

with a PV, which is simulated in SIMULINK using a 

MATLAB MDP toolbox. With one 16 KWh rapid charging 

(Lithium-ion battery) Peugeot electric vehicle, the HESS 

placed in a residential residence in Wolfenbüttel, Germany, 

meets the electrical load need of four residents. In the 

absence of a test case, the domestic load demand model for 

North-West Germany is employed. Load demand profile 

based on charging the EV's LI BAT at home and 

aggregating the resulting demand to the annual load 

demand. The ESs' charge states and net power flow were 

discretized and normalized within a 0–1 range, respectively. 

Afterwards, they're merged to form a tuple that describes 

the MDP's model state space, from which only one discrete 

action space (specified as overcharge/discharge or null of 

the ESs) can be selected at any time interval. Then, based on 

the next transition condition, in which the LA depth of 

discharge is 50% and the VR is maintained between 33% 

and 74% of the nominal capacity, a reward is given. The 

authors proposed a real-time energy management system for 

a hybrid (battery and ultracapacitor) tracked vehicle to 

optimize performance and energy economy with power split 

control for varied road driving circumstances [19]. The 

convergence of a multiple transition probability matrix is 

accelerated using a fast Q-Learning algorithm, which is also 

updated anytime the error norm exceeds the given criteria. 

The suggested technique outperformed a stochastic dynamic 

programming approach and a traditional RL with two 

driving cycles in terms of fuel efficiency. A Dyna-H RL was 

recently proposed in [20] for real-time optimisation of fuel 

usage in a PHEV. Using two clutch states and a braking 

state, the agent was employed to optimally regulate four 

traction configuration modes. Furthermore, energy 

management strategies for hybrid electric vehicles are 

generally dependent on optimization, necessitating explicit 

system knowledge. 

Furthermore, the authors in [21] proposed a real-time 

based RL power management for plug-in hybrid electric 

vehicles aimed at optimally distributing power between a 

battery and an ultracapacitor. The results validated using 

different driving conditions and vehicle parameters showed 

the RL based approach reduced total energy loss by 16.8% 

compared to a rule-based strategy. The authors in [22] 

proposed for the first-time applied reinforcement learning 

technique to minimise the fuel consumption of a hybrid 

electric vehicle. The formulation required only a partial 

model of the system without the need for an explicit model 

or TPM. 

The application of RL based energy management for 

HESS has mostly been considered in the literature 

concerning hybrid Electric vehicles while only a few have 

considered hybrid MG. 

Deep RL EMS is presented in [23] to handle stochastic 

power production in residential microgrids by using a 

convolution neural net to extract useful time-series 

information from a vast continuous non-handcrafted feature 

space. To avoid overfitting and positive bias, the neural net 

is validated on historical features of observation at regular 

intervals throughout training. The algorithm's performance 

is assessed using the Levelized energy cost economic 

criterion for maximising operation revenue.  

The approach in [24] describes an EMS based on a 

cooperative multi-agent strategy, in which different learning 

agents ranging from simple to complex jointly monitor and 

control the assets (such as RES, ES) of integrated 

homes/buildings and MGs. The authors of [25] present an 

EMS for a freestanding microgrid that uses a decentralized 

cooperative multi-agent enabled Fuzzy Q-learning. The 

continuous input states are formulated using five 

membership functions and an action space that includes a 

fuzzy set of each microgrid asset, as well as two fuzzy sets, 

which work together to create the agent's continuous action 

policy.  

For a grid-connected RES microgrid with ES and 

consumer load, [26] presented a two-steps-ahead RL EM 

method. The learning agent can optimally use the WTS, 

independent of the grid, to charge the ES and, on the other 

hand, maximize the utilization of the ES during peak 

demands, thanks to the RL's use of a two-step-ahead 

prediction of available wind power via an MCM, which 

solves a multi-criteria decision process. As a result, 

intelligent consumer uses learned stochastic scenarios to 

help them perform experience-based optimal control actions.  

Multi-agent-based RL was used in [27] to achieve optimal 

control of a micro-grid with unpredictability while lowering 

the average electricity cost sourced from an external grid. 

The importance of RL as a potential solution for many 

decision and control problems in electric power systems is 

highlighted by the authors in their comprehensive review 

[28]. Furthermore, control system techniques for power 

system applications, which are largely based on advances in 

certain fields such as applied mathematics, control theory, 

telecommunication, computer science, and operational 

research, have continued to evolve to meet dynamic 

challenges and requirements, particularly with the 

availability of more powerful computationally efficient 

resources. As a result, learning algorithms like RL, which 

allows controllers to learn a goal-oriented task, should be 

included in the control architecture so that controllers can 

learn and update their decision-making based on experience 

[28].  
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III. CONCLUSION 

This paper presented a concise review of existing energy 

management strategies. Recent EMS research has largely 

focused on forecast/historical and heuristic logic-based EMS 

that leverage A.I. and optimization.  As shown in [29], these 

approaches are not only computationally costly but also 

essentially heuristic, limiting available possibilities and 

omitting satisfactory yet intermediate solutions that could 

increase HESS performance. Power Pinch analysis (PoPAS) 

[30] - [32], a graphical EM technique that helps minimize 

the computing cost of optimisation strategies, has recently 

been applied for EM of HESS. The PoPA, on the other 

hand, was created using a DA method that ignored the 

impact of uncertainty.   

Furthermore, using a robust optimization method that 

takes uncertainty into account is thought to be a pessimistic 

strategy. As a result, over-budgeting resources can lead to 

waste, which can be a problem in real-world applications 

[33]. Similarly, for EM of MGs, stochastic and chance-

constrained based optimisation, as used in [34]–[37], were 

shown to be computationally inefficient and intractable. 

Hence, an alternative has been the use of approximate 

solutions which extensively depend on the accuracy of 

probabilistic distribution or explicit modelling of the 

underlying uncertainty in parameters, which can be 

practically limiting in real-world applications as the 

distribution might be unavailable [38], [39]. 

Interestingly, an intelligent agent-based algorithm, RL 

which can learn an MDP has been exploited mostly in 

literature for hybrid Electric vehicles while only a few have 

considered MGs. Nevertheless, the RL has often been used 

in conjunction with computationally cumbersome 

optimisation strategies. Therefore, future work would 

propose a deep reinforcement learning-based adaptive 

power pinch analysis energy management strategy to 

integrate the advantages of the methods while limiting their 

shortcomings. The RL approach in [40] excludes the 

use/build-up and as well as update of a Markov chain to 

model a stochastic transition matrix (TPM) in contrast with 

[19], [20], [41]. 

Furthermore, the optimal control strategy which is often 

derived from a stepwise non-linear optimisation as in [19] is 

replaced by a backwards-looking optimisation in [22] and 

further replaced by the heuristic graphical-based adaptive 

power pinch analysis MPC framework in [40]. Thus, the 

computational cost of ensuring a TPM offline and solving a 

complex non-convex optimisation EMS for HESS 

(especially with heterogeneous energy and flow mix which 

must deal with the intrinsic interaction of power, hydrogen, 

and water flow between subsystems) will be avoided.  

Most interestingly, in the aforementioned RL papers 

excluding [21], the evaluation and formulation of a scalar 

reward for the performance of the RL agent have been based 

on a backwards-looking optimisation, which has been 

implemented subjectively and without recourse to a 

systematic approach that determines the ideal optimal action 

strategy as in the use of a corrected adaptive PoPA. As a 

result, these rewards were based on a local maximization, 

which can potentially raise the operational costs and result 

in extra energy losses, as opposed to the global maximum 

insight provided by a corrected adaptive PoPA.  

Hence, future EMS designs with accurate predictive 

models or forecast error correction mechanisms such as 

deep RL and PoPA will not only minimise resources 

wastage but also curtail asset degradation. 
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