##plugins.themes.bootstrap3.article.main##

Most living forms of life need clean water, air and nutrient resources to maintain a healthy life. The increased population and industrial and technological development have caused more energy needs. This affects air quality (AQ) and hence human health negatively. Because AQ is critical for human health, various measurement and analysis methods are developed and the amount and variety of airborne pollutants are examined by today's methods such as passive and active samplers, automatic analyzers and remote sensors. In this study, AQ measurement is aimed to create an alternative to ready remote sensing systems by designing low cost and programmable microprocessor system which allows in place and instant data collection. Arduino, an electronic prototype platform, is used to collect, transfer and process sensor data. An interface was coded using the Visual Studio to make the data instantaneously analyzed by any program on the computer. The BEUHavaKalite device is a handheld AQ measurement device providing a wide range of measurements, gas diversity, calibrated according to the internal and external environment, high sensitivity and low cost. The other unit of this system is HavaKaliteSoft, the user interface for transferring and processing the sensor measurement results to the computer. This system tests have been carried out in Tatvan and Merkez districts of Bitlis province and the measurements confirm the accuracy of the device. The device is especially important because it allows scientists working in this field to collect data related to the field of AQ and carry out detailed studies.

Downloads

Download data is not yet available.

References

  1. Yang, Z. ve Wang, J. (2017). A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction. Environmental Research, 158(May), 105–117. doi:10.1016/j.envres.2017.06.002.
     Google Scholar
  2. Pollution, I. A. I. R. ve On, N. E. (2013). İç Ortam Hava Kirliliği ve Çalışanlara Olumsuz Etkileri, (September), 112–119. doi:907.2RIC.
     Google Scholar
  3. Kurutuş, B. (2009). Bir Metal Endüstrisindeki Çalışma Ortamlarının İç Hava Kalitesinin Belirlenmesi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü (s. 108).
     Google Scholar
  4. Çiçek, İ., Türkoğlu, N. ve Gürgen, G. (2004). Ankara’da Hava Kirliliğinin İstatistiksel Analizi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 14(2), 1–18. http://web.firat.edu.tr/sosyalbil/dergi/arsiv/cilt14/sayi2/1-18.pdf adresinden erişildi.
     Google Scholar
  5. Güler Dincer, N. ve Akkuş, Ö. (2018). A new fuzzy time series model based on robust clustering for forecasting of air pollution. Ecological Informatics, 43(December 2017), 157–164. doi:10.1016/j.ecoinf.2017.12.001.
     Google Scholar
  6. Alyüz, B., Veli, S. (2006). İç Ortam Havasında Bulunan Uçucu Organik Bileşikler ve Sağlık Üzerine Etkileri. Trakya Univ J Sci, 7(2), 109–116. doi:Doi 10.1039/B818146m.
     Google Scholar
  7. Altıkat, S. ve Çelik, A. (2012). Iğdır İlinin Hayvansal Atık Kaynaklı Biyogaz Potansiyeli Biogas Potential from Animal Waste of Iğdır Province. Iğdır Üni. Fen Bilimleri Enst. Der, 2(1), 61–66.
     Google Scholar
  8. Karakaş, B. (2015). İç Ve Dış Hava Ortamlarında Partġküler Madde (Pm10, Pm2.5 Ve Pm1) Konsantrasyonlarının Değerlendirilmesi. Hacettepe Üniversitesi Fenbilimleri Enstitüsü, 154.
     Google Scholar
  9. Çınar Çevre Laboratuvarı A.Ş. (2016). Adana Temiz Hava Merkezi Adana. T.C. Çevre ve Şehircilik Bakanlığı içinde (s. 374). Hava Kirliliği Raporu 2017. (y.y.).TMMOB Çevre Mühendisleri Odası.
     Google Scholar
  10. Sofuoğlu, S. C. (2016). İç Hava Kirleticileri ve İnsan Sağlığına Etkisi. Tesisat Mühendisliği, 153, 33–44.
     Google Scholar
  11. WHO, World Health Organization Regional Office for Europe,2000, Air Quality Guidelines, WHO Regional Publications, European Series, No.91, Second Edition.
     Google Scholar