Wattle and Daub Experimental Workshop: Durability Testing after 14 years of Uninterrupted Use
##plugins.themes.bootstrap3.article.main##
An important factor to analyze when studying the useful lifetime of earth constructions is the detection of any constructive pathologies that may occur; an important consideration when building a house; yet in Argentina information on building with wattle and daub is scarce. This paper describes a durability test conducted on an experimental workshop built with wattle and daub technology in 2004, in the city of Mendoza, Argentina. The building has a floor area of 33.63 m2 (5.70 m x 5.90 m), and houses an experimental workshop for thermal energy research and the construction of solar equipment. During the 14 years that the workshop has been in use, the wattle and daub walls have been exposed to various environmental forces, such as rain, wind, and earthquakes. However, its thermal behavior has remained constant over time, maintaining a difference in temperature of 5.8ºC between the inside and outside without auxiliary heating. In general, the construction has been well-preserved and serves the purpose for which it was built, thus proving that wattle and daub constructions will remain in optimum condition for at least 14 years with minimal maintenance required to prevent surface materials from deteriorating.
Downloads
References
-
Vyncke1, J; Kupers, L and Denies N. (2018) Earth as Building Material – an overview of RILEM activities and recent Innovations in Geotechnics. MATEC Web of Conferences 149, 02001. https://doi.org/10.1051/matecconf/201814902001.
Google Scholar
1
-
Minke, Garnot. (2005). Manual de construcción para viviendas antisísmicas de tierra. Universidad de Kessel – Alemania.
Google Scholar
2
-
Ciancio, D; Beckett, C. (2015). Rammed Earth Construction: Cutting-Edge Research on Traditional and Modern Rammed Earth. Ed. University of Western Australia. ISBN 978-1-138-02770-1.
Google Scholar
3
-
Bridgwood, B; Lennie, L. (2009). History, Performance and Conservation. Ed. Taylor & Francis. Pp. 337. ISB:0-415-43419.
Google Scholar
4
-
Pierdicca, Roberto. (2018). Mapping Chimu's settlements for conservation purposes using UAV and close range photogrammetry. The virtual reconstruction of Palacio Tschudi, Chan Chan, Peru. Digital Applications in Archaeology and Cultural Heritage. Pp. 27-34. Elsevier Ltd.
Google Scholar
5
-
Manitoba. (2010). Salta – Refugio del Tiempo. Gobernación de Salta. Manitoba, agencia de comunicación. Photography: Gustavo Guijarro. Ed. Cartoon S.A. Salta.
Google Scholar
6
-
Esteves A., De Rosa C. (1995). Duración de las reservas de combustibles fósiles y su relación con la vida útil de los edificios. Proceedings of XVIII Workshop de ASADES, Vol. III, pp. 09.9 - 09.14. Ciudad de San Luis. Argentina.
Google Scholar
7
-
Bui, Q.B; Morel, J.C; Venkatarama Reddy, B.V; Ghayad, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, ISSN: 0360-1323, Vol: 44, Issue: 5, Page: 912-919.
Google Scholar
8
-
Costa C; Cerqueira Â; Rocha F and Velosa A. (2018). The sustainability of adobe construction: past to future. International Journal of Architectural Heritage. ISSN: 1558-3058 (Print) 1558-3066 (Online).
Google Scholar
9
-
Chiappero, Rubén y Supisiche, María. (2003). Arquitectura en tierra cruda. Ed. Nobuko. ISBN: 987-20641-5-6.
Google Scholar
10
-
Graham, T. (2003). Wattle and Daub: Craft, Conservation and Wiltshire Case Study. Pp. 111. Department of Architecture and Civil Engineering University of Bath.
Google Scholar
11
-
HABITERRA XIV. (2003). Arquitecturas de Tierra en Iberoamérica. Ed. Mendez, P. Centro Barro, Argentina.
Google Scholar
12
-
PROTERRA. (2003). Técnicas mixtas de construcción con tierra. HABYTED Subprograma XIV – Tecnología para Viviendas de Interés Social.
Google Scholar
13
-
Pacheco-Torgal, F; Said Jalali. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials. Pp. 512-519.
Google Scholar
14
-
Fernández, J.E.; Esteves, A.; Oviedo, G.; Buenanueva, F. (2005). La quincha, una tecnología alternativa eficiente para la autoconstrucción. Aspectos educativos. Rev. AVERMA Vol. 9, Secc. 10, pp. 25-29. Salta, Argentina.
Google Scholar
15
-
INPRES (2000). Instituto Nacional de Prevención Sísmica. Proyecto de reglamento argentino para construcciones sismorresistentes INPRES-CIRSOC 103.
Google Scholar
16
-
Esteves A., Ganem C., Fernáncez J.E., Mitchel. J. (2003). Thermal Insulating Material for Low-Income Housing. PLEA2003. Santiago de Chile. Ed. En Cd. Art. 11.
Google Scholar
17
-
Fernández, J.E.; Esteves, A. (2004). Conservación de energía en sistemas autoconstruidos. El caso de la quincha mejorada. Rev. AVERMA Vol. 8, Secc. 5, pp. 121-125. Salta, Argentina.
Google Scholar
18
-
Mercado, M.V. y Esteves, A. (2006). “Muro solar pasivo en viviendas construidas con quincha”. Rev. AVERMA Vol. 10, secc. 5, pp. 107-114. Salta, Argentina.
Google Scholar
19
-
Cuitiño, G.; Esteves, A.; Maldonado, G.; Rotondaro, R. (2010). Análisis y reflexiones sobre el comportamiento higrotérmico de construcciones con quincha. Estudio del caso de un taller experimental en Mendoza. Rev. ÁREA. Universidad de Buenos Aires.
Google Scholar
20