##plugins.themes.bootstrap3.article.main##

Undoped GaN layers were grown via radio-frequency magnetron sputtering, using a target manufactured with undoped GaN powders. Where the GaN powders were sintetized by nitridation of metallic gallium at 1000 °C in ammonia flow for two hours. X-ray diffraction patterns demonstrated that there are not a significant difference between the diffraction angles of the GaN powders and the GaN layers. The x-ray diffraction patterns for the GaN powders showed narrow peaks with a crystal size of 41 nm, while the GaN layers showed broad peaks with a crystal size of 7.7 nm. Scanning electron microscopy micrographs demonstrated the formation of crystals of irregular size with an average length of 1.56 ?m for the GaN powders, while a homogeneous surface morphology with a thickness of 6.6 ?m for the GaN layers was observed. Photoluminescence spectra showed a high emission at 3.49 eV (355.13 nm) for the GaN powders and an emission band energy located at 3.42 eV (361.54 nm) for the GaN layers, both emission bands were related to the band-to-band transition for the GaN. Raman spectra for the GaN powders showed the A1(TO), E1(TO), and E2(High) classical vibration modes. The GaN layers only showed the A1(TO) mode.

Downloads

Download data is not yet available.

References

  1. W.C. Johnson, J.B. Parson, M.C. Crew, Nitrogen compounds of gallium III. J. Phys. Chem. 10(1932) 2651 - 2654. DOI: 10.1021/j150340a01
     Google Scholar
  2. H.P. Maruska, W.C. Rhines, A modern perspective on the history of semiconductor nitride blue light sources, Solid States Electronics 111(2015) 32 – 41. https://doi.org/10.1016/j.sse.2015.04.010
     Google Scholar
  3. S.T. Pearton, J.C. Zolper, R.J. Shul , F. Ren, GaN: Processing, defects, and devices, J. Appl. Phys. 1(1999) 1-78. https://doi.org/10.1063/1.371145
     Google Scholar
  4. S. Gradečak, F. Qian, And. Li, H.G. Park, C.M. Lieber, GaN nanowire lasers with low lasing thresholds, Appl. Phys. Lett. 87(2005) 173111-1-3. https://doi.org/10.1063/1.2115087
     Google Scholar
  5. S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules, J. Cryst. Growth 456(2016) 15 - 20. DOI:10.1016/j.jcrysgro.2016.07.034
     Google Scholar
  6. S. Sintonen, P. Kivisaari , S. Pimputkar, S. Suihkonen, T. Schulz, J. S. Speck, S. Nakamura, Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN, J. Cryst. Growth456(2016)43-50. https://doi.org/10.1016/j.jcrysgro.2016.08.040
     Google Scholar
  7. H. Okumura. S. Misawa, S. Yoshida, Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy, Appl. Phys. Lett. 9(1991) 1058 - 1060.
     Google Scholar
  8. https://doi.org/10.1063/1.106344
     Google Scholar
  9. H. Vilchis, V.M, Sanchez, R.A. Escobosa. Cubic GaN layers grown by metalorganic chemical steam deposition on GaN templates obtained by ninitridation of GaAs, Thin Solid Films 520(2012) 5191 - 5194. https://doi.org/10.1016/j.tsf.2012.03.123
     Google Scholar
  10. H. Okumura, K.Ohta, G. Feuillet, K. Balakrishnan, S. Chichibu, H. Hamaguchi, Growth and characterization of cubic GaN, J. Cryst. Growth17(1997)113-133. https://doi.org/10.1016/S0022-0248(97)00084-5
     Google Scholar
  11. H. Li, R.J. Xie, N. Hirosaki, B. Dierre, T. Sekiguchi, Y. Yajima, Preparation and cathodoluminescense of Mg-doped and Zn-doped GaN powders, J. Am. Ceram. Soc. 91(5)(2008) 1711 – 1714. https://doi.org/10.1111/j.1551-2916.2008.02338.x
     Google Scholar
  12. J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas, C.R. Eddy Jr, Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD, J. Cryst. Growth 498(2018) 352 – 356. https://doi.org/10.1016/j.jcrysgro.2018.06.032
     Google Scholar
  13. Z. Liliental-Weber, R. dos Reis, T. Sochacki, M. Bockowski, The influence of the substrate misorientation on the structural quality of GaN layers grown by HVPE, J. Cryst. Growth 498(2018) 346 – 351. https://doi.org/10.1016/j.jcrysgro.2018.07.010
     Google Scholar
  14. C.P. Thao, D.H. Kuo, D.J. Jan, Codoping effects of the Zn acceptor on the structural characteristics and electrical properties of the Ge donor-doped GaN thin films and its heterojuntion diodes all made by reactive sputtering, J. Mat. Sci. Sem. Proc. 82(2018) 126-134. https://doi.org/10.1016/j.mssp.2018.04.002
     Google Scholar
  15. W.S. Jung, Synthesis and characterization of gallium nitride powders from a gallium(III) sulfate salt in flowing ammonia, J. Kor. Chem. Soc. 11(2003) 1058 - 1061. DOI: 10.4191/KCERS.2003.40.11.1058
     Google Scholar
  16. R. Garcia, G.A. Hirata, A.C. Thomas, F.A. Ponce, Structure and luminescence of nanocrystalline gallium nitride synthesized by a novel polymer pyrolysis route, Opt. Mater. 29(2006) 19 – 23. https://doi.org/10.1016/j.optmat.2006.03.004
     Google Scholar
  17. T. Maruyama, H. Miyake, Gallium nitride thin films deposited by radio-frequency magnetron sputtering, J. Vac. Sci. Technol. A 4(2006) 1096 - 1099. https://doi.org/10.1116/1.2208988
     Google Scholar
  18. E. Gastellóu, C. Morales, R. García, G. García, G.A. Hirata, R. Galeazzi, A.M. Herrera, E. Rosendo, T. Díaz, J.R. Ramos, R. Romano, A. Coyopol, Enhanced crystalline size of undoped GaN powders obtained by nitridation of metallic gallium, Opt. Mater. 83(2018) 220-224. https://doi.org/10.1016/j.optmat.2018.06.021
     Google Scholar
  19. J.I. Langford, A.J.C. Wilson, Sherrer after Sixty Years: A survey and some new results in the determination of crystallite size, J. Appli. Cryst. 11(1978)102-113. https://doi.org/10.1107/S0021889878012844
     Google Scholar
  20. M.A. Reshchikov, H. Morkoç, Luminescence properties of defects in GaN, J. Appl. Phys. 97(2005) 061301-1 - 061301-95. https://doi.org/10.1063/1.1868059
     Google Scholar
  21. M.S. Kumar, J. Kumar, XRD, XPS, SEM, PL and Raman scattering analysis of synthesized GaN powder, Mat. Chem. Phys, 77(2002) 341-345. https://doi.org/10.1016/S0254-0584(02)00012-3
     Google Scholar
  22. G.N. Chaudhari, V.R. Chinchamalatpure, S.A. Ghosh, Structural and electrical characterization of GaN thin films on Si(100), Am. J. Analyt. Chem. 2(2011) 984-988. doi:10.4236/ajac.2011.28115
     Google Scholar


Most read articles by the same author(s)