Hexagonal Nanocrystals into AlGaN Powders Obtained via Pyrolysis from an Organometallic Compound
##plugins.themes.bootstrap3.article.main##
Hexagonal nanocrystals into Al0.2Ga0.8N and Al0.6Ga0.4N powders via pyrolysis from an organometallic compound, followed by a nitridation process in ammonia flow at 1000 °C for two hours were obtained. X-ray diffraction patterns demonstrated a shift towards greater angles to the right for the AlGaN powders with respect to GaN powders, this shift could indicate the formation of the AlGaN powders. Scanning electron microscopy micrographs showed the obtaining from semi-plates of porous appearance for the Al0.2Ga0.8N powders until well-defined plates for the Al0.6Ga0.4N powders. High resolution transmission electron microscopy micrographs demonstrated the presence of hexagonal nanocrystals into Al0.2Ga0.8N powders with an average crystal size of 10.3 nm, while that for the Al0.6Ga0.4N powders an average crystal size of 9.7 nm was observed. UV-visible spectra showed a transmittance cut-off for the Al0.2Ga0.8N powders of 3.71 eV (334.2 nm) and a transmittance cut-off of 4.53 eV (273.7 nm) for the Al0.6Ga0.4N powders.
Downloads
References
-
S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode, Springer, Berlin, 2000.
Google Scholar
1
-
Lars Bergström, Per Delsing, Anne L’Huillier, and Olle Inganäs, the Nobel Committee for Physics, The Nobel Prize in Physics 2014, The Royal Swedish Academy of Sciences. Available online: HTTP://KVA.SE
Google Scholar
2
-
E. Gastellóu, C. Morales, R. García, G. García, G.A. Hirata, A.M. Herrera, R. Galeazzi, E. Rosendo, T. Díaz, E.M. Tejeda, P-type GaN powders obtained by nitridation of Ga-Mg liquid metallic solution, J. Alloys Compd. 772(2019) 1224-1029. Available online: https://doi.org/10.1016/j.jallcom.2018.09.174 (accessed on 17 September 2018).
Google Scholar
3
-
P.S. Vergeles, V.I. Orlov, A.Y. Polyakov, E.B. Yakimov, T. Kim, I.H. Lee, Recombination and optical properties of dislocations gliding at room temperature in GaN under applied stress, J. Alloys Compd. 776(2019) 181-186. . Available online: https://doi.org/10.1016/j.jallcom.2018.10.280 (accessed on 23 October 2018).
Google Scholar
4
-
Y. Wu, Y. Wang, K. Sun, A. Aiello, P. Bhattacharya, Z. Mi, Molecular beam epitaxy and characterization of Mg-doped GaN epilayers grown on Si (001) substrate through controlled nanowire coalescence, J. Cryst. Growth 498 (2018) 109 -114. Available online: https://doi.org/10.1016/j.jcrysgro.2018.06.008 (accessed on 15 June 2018).
Google Scholar
5
-
D. Kambayashi, Y. Mizuno, H. Takakura, T. Murayama, S. Naritsuka, Mesa orientation dependence of lateral growth of GaN microchannel epitaxy by electric liquid-phase epitaxy using a mesa-shaped substrate, J. Cryst. Growth 496 (2018) 74 - 79. Available online: https://doi.org/10.1016/j.jcrysgro.2018.04.011 (accessed on 12 April 2018).
Google Scholar
6
-
H. Amano et al., The 2018 GaN power electronics roadmap, J. Phys. D: Appl. Phys. 51(2018) 1– 48. Available online: https://doi.org/10.1088/1361-6463/aaaf9d (accessed on 26 March 2018).
Google Scholar
7
-
B. Kuppulingam, Shubra Singh, K. Baskar, Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures, in: AIP Conference Proceedings, 1591(2014) 1437 -1439. Available online: https://doi.org/10.1063/1.4872988 (accessed on 17 February 2015).
Google Scholar
8
-
R. Garcia, S. Srinivasan, O.E. Contreras, A.C. Thomas, F.A. Ponce, AlxGa1-xN (0≤x≤1) nanocrystalline powder by pyrolysis route, J. Cryst. Growth 308(2007) 198 – 203. Available online: https://doi.org/10.1016/j.jcrysgro.2007.07.048 (accessed on 6 August 2007).
Google Scholar
9
-
M. Forsberg, C. Hemmingsson, H. Amano, G. Pozina, Dynamic properties of excitons in ZnO/AlGaN/GaN hybrid nanostructures, Nature 5(2015) 1- 5. Available online: https://doi.org/10.1038/srep07889 (accessed on 20 January 2015).
Google Scholar
10
-
M. Forsberg, C. Hemmingsson, H.Amano, G. Pozina, Time-resolved photoluminescence properties of hybrids based on inorganic AlGaN/GaN quantum wells and colloidal ZnO nanocrystals, Superlattices and Microstructures, 87 (2015), 38-41. Available online: https://doi.org/10.1016/j.spmi.2015.07.017 (accessed on 8 July 2015).
Google Scholar
11
-
H. Sun, M.K. Shakfa, M.M. Muhammed, B. Janjua, K.H. Li, R. Lin, T. K. Ng, I.S. Roqan, B.S. Ooi, X. Li, Surface-passivated AlGaN nanowires for enhanced luminescence of ultraviolet light emitting diodes, ACS Photonics, 5 (2018), 964 – 970. Available online: 10.1021/acsphotonics.7b01235 (accessed on 19 December 2017).
Google Scholar
12
-
A.M. Herrera, R. García, G. García, E. Gastellóu, F. Nieto, G.A. Hirata, O.E. Contreras, C. Morales, E. Rosendo, T. Díaz, Experimental determination of the pyrolysis temperatures of an organometallic complex to obtain AlXGa1-XN powders, J. Alloys Compd. 775(2019) 109 – 115. Available online: https://doi.org/10.1016/j.jallcom.2018.10.094 (accessed on 10 October 2018).
Google Scholar
13
-
M. Stutzmann *, O. Ambacher, A. Cros, M.S. Brandt, H. Angerer, R. Dimitrov, N. Reinacher, T. Metzger, R. Höpler, D. Brunner, F. Freudenberg, R. Handschuh, Ch. Deg, Properties and applications of MBE grown AlGaN, Mater Sci and Eng B50 (1997) 212–218. Available online: https://doi.org/10.1016/S0921-5107(97)00165-7 (accessed on 27 March 1998).
Google Scholar
14
-
Xiaoyan Wang, Xiaoliang Wang, Guoxin Hu, Baozhu Wang, Zhiyong Ma, Hongling Xiao, Cuimei Wang, Junxue Ran, Jianping Li, Characteristics of high Al content AlxGa1xN grown by metalorganic chemical vapor deposition, Microelectron J. 38 (2007) 838–841. Available online: https://doi.org/10.1016/j.mejo.2007.07.090 (accessed on 30 August 2007).
Google Scholar
15
-
J. F. Muth, J. D. Brown, M. A. L. Johnson, Zhonghai Yu, R. M. Kolbas, J. W. Cook, Jr. and J. F. Schetzina, Absorption Coefficient and Refractive Index of Gan, AlN and AlGaN Alloys, MRS Internet J. Nitride Semicond. Res. 4S1, G5.2 (1999) 502-507. Available online: https://doi.org/10.1557/S1092578300002957 (accessed on 13 June 2014).
Google Scholar
16
-
D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher,a) and M. Stutzmann, Optical constants of epitaxial AlGaN films and their temperature dependence, J. Appl. Phys. 82, (1997) 5090-5096. . Available online: https://doi.org/10.1063/1.366309 (accessed on 4 June 1998).
Google Scholar
17
-
Shuchang Wang, Xiong Zhang, Qian Dai, Zhe Chuan Feng, Yiping Cui, An X-ray diffraction and Raman spectroscopy investigation of AlGaN epi-layers with high Al composition, Optik 131 (2017) 201–206. . Available online: https://doi.org/10.1016/j.ijleo.2016.11.079 (accessed on 16 November 2016).
Google Scholar
18
Most read articles by the same author(s)
-
Erick Gastellóu,
G. García,
A. M. Herrera,
C. Morales,
R. García,
G. A. Hirata,
M. Robles,
J. A. Rodríguez,
I. E. García,
A Brief Review of Growth Techniques for Obtaining of III-V Semiconductor Compounds , European Journal of Engineering and Technology Research: Vol. 4 No. 9: SEPTEMBER 2019 -
Erick Gastellóu,
Crisoforo Morales,
Godofredo García,
Rafael García,
Gustavo Alonso Hirata,
Ana María Herrera,
Reina Galeazzi,
Enrique Rosendo,
Tomas Díaz,
Roman Romano,
Antonio Coyopol,
Structural and Optical Changes of Undoped GaN Layers Grown via Radio-frequency Magnetron Sputtering Obtained from GaN Powders , European Journal of Engineering and Technology Research: Vol. 4 No. 2: FEBRUARY 2019 -
Daniel Diaz Tapia,
Crisoforo Morales Ruiz,
Reina Galeazzi Isasmendi,
Héctor Pérez Ladrón de Guevara,
Roberto Portillo,
Roman Romano Trujillo,
Antonio Coyopol,
Enrique Rosendo,
Blue-Shifting Photoluminescence in HFCVD-Deposited Tin-Doped SRO Films , European Journal of Engineering and Technology Research: Vol. 10 No. 1 (2025)