About Cognitive Radio Access Models
##plugins.themes.bootstrap3.article.main##
Due to the limitation of spectrum availability for data transmission in the new broad band technologies, 5G through the cognitive radio technology offers significantly increase the spectrum efficiency. Radio access models used by cognitive, overlay, underlay and interweave are the focus of this work.
Downloads
Download data is not yet available.
References
-
Wang D., Song B., Chen D. and Du X. Intelligent Cognitive Radio in 5G: AI-Based Hierarchical Cognitive Cellular Networks. IEEE Wireless Communications, June 2019;26(3):54-61. doi: 10.1109/MWC.2019.1800353.
Google Scholar
1
-
Sasipriya S. and Vigneshram R. An overview of cognitive radio in 5G wireless communications. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, 2016, pp. 1-5. doi: 10.1109/ICCIC.2016.7919725.
Google Scholar
2
-
Digham F., Alouini M.-S., Simon K. On the energy detection of unknown signals over fading channels. IEEE Trans. Commun., 2007;55:21–24.
Google Scholar
3
-
Naraghi-Poor M., Ikuma T. Autocorrelation-based spectrum sensing for cognitive radio. IEEE Trans. Veh. Technol., 2010;59:718–733.
Google Scholar
4
-
Dandawate A., Giannakis G. Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Process, 1994;10:2355–2369.
Google Scholar
5
-
Nasser A., Mansour A., Yao K.C., Charara H., Chaitou M. Efficient spectrum sensing approaches based on waveform detection. In: Third International Conference on e-Technologies and Networks for Development (ICeND), pp. 13–17, 2014.
Google Scholar
6
-
Wyglinski M., Nekovee M., Hou Y. Cognitive Radio Communications and Networks, Principles and Practice. Elsevier, Amsterdam, The Netherlands, 2010.
Google Scholar
7
-
Xin C. Network Coding Relayed Dynamic Spectrum Access. In Proceedings of the ACM the Workshop in Cognitive Radio Networks (CoRoNet), Chicago, Il., USA, 20-24 October 2010, pp. 31-36.
Google Scholar
8
-
Cabric D., Mishra S. and Brodersen R. Implementation issues in spectrum sensing for cognitive radios. In Proc. Asilomar Conf. on Signals, Systems and Computers. Vol. 1, 2004.
Google Scholar
9
-
Yucek T., Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials, 2009;11:116–130.
Google Scholar
10
-
Khoshkholgh M., Navaie K., & Yanikomeroglu H. Access strategies for spectrum sharing fading environment: Overlay, underlay, and mixed. IEEE Journal on Mobile Computing, 2010;9(12):1780–1793.
Google Scholar
11
-
Zahedi A. Performance analysis of multiple-relay cognitive communication system in Rayleigh fading channel. Telecommunication Systems, 2019;72:389–399 https://doi.org/10.1007/s11235-019-00574-8.
Google Scholar
12
-
Modi B., Annamalai A., Olabiyi O., & Palat R Ch. Ergodic capacity analysis of cooperative amplify-and-forward relay networks over rice and Nakagami-m fading channels. International Journal of Wireless & Mobile Networks (IJWMN), 2012;4(1):97–116.
Google Scholar
13
-
Urkowitz H. Energy detection of unknown deterministic signals. Proc IIIE, 1967;55(4). Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.
Google Scholar
14
-
Tandra R., Sahai A. SNR walls for signal detection. IEEE, J. Sel. Topic Signal Process, 2008;2(1).
Google Scholar
15
-
Atapattu S., Tellambura C. and Jiang H. Energy Detection for Spectrum Sensing Radio. Springer, 2014.
Google Scholar
16
-
Lei H., Xu M., Ansari I. S., Pan G., Qaraqe K. A., & Alouini M. On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 2017;1(2):192–203.
Google Scholar
17
-
Vashistha A., Sharma S., & Bohara V. A. Outage analysis of a multiple-antenna cognitive radio system with cooperative decode-and-forward relaying. IEEE Wireless Communications Letters, 2015;4(2):125–128.
Google Scholar
18
-
Yuan Y., Bahl P., Chandra R., Chou P. A., Ferrell J. I., Moscibroda T., Narlanka S., and Wu Y. Knows: Cognitive radio networks over white spaces. Symposium on New Frontiers in Dynamic Networks, 2007.
Google Scholar
19
Most read articles by the same author(s)
-
Salvador Ricardo Meneses González,
Rita Trinidad Rodríguez Márquez,
Microstrip Antenna Design for 3.1-4.2 GHz Frequency Band Applied to 5G Mobile Devices , European Journal of Engineering and Technology Research: Vol. 4 No. 10: OCTOBER 2019