##plugins.themes.bootstrap3.article.main##

Recently research is focused on natural organic compounds as metallic corrosion inhibitors demonstrating good corrosion protection and efficiencies. Steel corrosion behavior in acid media was evaluated in the presence of a pure natural flavonoid metabolite named Chrysin present in different plants. The evaluation of corrosion protection was studied using polarization curves, electrochemical impedance spectroscopy (EIS) and electrochemical current density under potentiostatic conditions. Polarization curves present active dissolution and at high overpotentials two passivation regions were found. Slight corrosion protection was obtained from EIS measurements and potentiostatic curves at three different anodic potentials: -370, +216 and +600 mV, revealed a more stable passive film in the presence of Chrysin at both passive regions. High corrosion protection was obtained on the film formed at +600 mV during the first 4 hours of immersion.

Downloads

Download data is not yet available.

References

  1. M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review”. Corrosion Science. Vol. 86, 9, pp.17-41. 2014.
     Google Scholar
  2. W. D. Callister and D. G. Rethwisch. Materials science and engineering Vol. 5. NewYork, John Wiley & Sons. 2011.
     Google Scholar
  3. P. Su, and W. W. Doerr. “Fire protection sprinkler system for extremely corrosive industrial duct environments” Process Safety Progress, Vol. 29, 1, pp.70-78. 2010.
     Google Scholar
  4. R. S. Goel, W. A. Siddiqi, B. Ahmed and J. Hussan. “Corrosion inhibition of mild steel in HCl by isolated compounds of Riccinus communis (L.)”. E-Journal of Chemistry, Vol. 7, S1, pp. S319-S329. 2010.
     Google Scholar
  5. G. K. Gomma, “Corrosion of low-carbon steel in sulphuric acid solution in presence of pyrazole-halides mixture”. Materials Science Communication, Vol.55, 3, pp. 241-246. 1998.
     Google Scholar
  6. Y. I. Kuznetsov, “Physico-Chemical Aspects of Protection of Metals by Organic Corrosion Inhibitors”. Protection of Metals and Physical Chemistry of Surfaces, Vol. 51, pp. 1111-1121. 2015.
     Google Scholar
  7. B. B. Ramesh, and. K. Thangavelu, “The effect of isomers of some organic compounds as inhibitors for the corrosion of carbon steel in sulfuric acid”. Anti-Corrosion Methods and Materials, Vol. 52, 4, pp. 219-225. 2005.
     Google Scholar
  8. H. D. Lece, K.C. Emregül, K. C., and O. Atakol, “Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors”. Corrosion Science, Vol. 55, 5, pp. 1460-1468. 2008.
     Google Scholar
  9. G. Gece, “Drugs: A review of promising novel corrosion inhibitors”. Corrosion Science, Vol. 53, 12, pp. 3873-3898. 2011.
     Google Scholar
  10. M. Hosseini, S. F., Mertens, M. Ghorbani, and M. R. Arshadi, “Asymmetrical Shiff bases as inhibitors of mild steel corrosion in sulphuric acid media”. Material Chemistry and Physics, Vol. 78, 3, pp. 800-808. 2003.
     Google Scholar
  11. L. M., Vračar and d. m. Drazic, “Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid”. Corrosion Science, Vol. 44, 8, pp-1669-1680. 2002.
     Google Scholar
  12. F. L. Bentiss, M Lebrini, M Lagrenée, M Traisne, A. Elfarouk, and H. Vezin, “The influence of some new 2, 5-disubstituted 1, 3, 4-thiadiazoles on the corrosion behaviour of mild steel in 1 M HCl solution: AC impedance study and theoretical approach”. Electrochimica Acta, Vol. 52, 24. pp. 6865-6872. 2007.
     Google Scholar
  13. N. M. Dummer, “4(5)-Methylbenzotriazole: a review of the life-cycle of an emerging contaminant”. Reviews in Environmental Science and Biotechnology, Vol. 13, 1. pp. 53-61. 2014.
     Google Scholar
  14. A. Espinoza-Vázquez, and F. J. Rodriguez-Gomez, “Caffeine and nicotine in 3% NaCl solution with CO2 as corrosion inhibitors for low carbon steel”. RSC Advances, Vol. 74, 6, 2016.
     Google Scholar
  15. M. P. Znini, J. Paolini, J. M. Desjobert, J. Costa, N. Lahhit, and A. B.ouyanzer, “Evaluation of the inhibitive effect of essential oil of Lavandula multifida L., on the corrosion behavior of C38 steel in 0.5 M H2SO4 medium”. Research on Chemical Intermediates, Vol. 38, 2, pp. 669-683. 2012.
     Google Scholar
  16. H. Keleş, and M. Keleş “Electrochemical investigation of a schiff base synthesized by cinnamaldehyde as corrosion inhibitor on mild steel in acidic medium”. Research on Chemical Intermediates, Vol. 40, 1, pp. 193-209. 2014.
     Google Scholar
  17. P. B. Raja, and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media-a review”. Materials Letters, Vol. 62, 1, pp.113-116. 2008.
     Google Scholar
  18. M. A. Velázquez-González, J. G. Gonzalez-Rodriguez, M. G. Valladares-Cisneros, I. A. Hermoso-Diaz, “Use of Rosmarinus officinalis as green corrosion inhibitor for carbon steel in acid medium”. American Journal of Analytical Chemistry, Vol. 5, 2, ID 42143. 2014.
     Google Scholar
  19. P. M. Dewick, Medicinal natural products: a biosynthetic approach. New York. John Wiley & Sons. 2002.
     Google Scholar
  20. M. M. Kasprzak, A. Erxleben, and J. Ochocki, “Properties and applications of flavonoid metal complexes.” RSC Advances, Vol. 5, 57, pp. 45853-45877. 2015.
     Google Scholar
  21. S. A. Van Acker, J. G. Van Balen, D. J. Van den Berg, A. Bast, and W. J. F. Van der Vigjh, “Influence of iron chelation on the antioxidant activity of flavonoids”. Biochemical pharmacology, Vol. 56, 8, pp. 935-943.1998.
     Google Scholar
  22. S. A. Van Acker, W. J. F. Van Der Berg, M. J. L. Tromp, and A. Bast, “Structural aspects of antioxidant activity of flavonoids”. Free Radical Biology and Medicine, Vol. 20, 3, pp. 331-342. 1996.
     Google Scholar
  23. P. G. Pietta, “Flavonoids as antioxidants”. Journal of natural products, Vol. 63, 7, pp. 1035-1042. 2000.
     Google Scholar
  24. S. D. Banjarnahor and N. Artanti, “Antioxidant properties of flavonoids”. Medical Journal of Indonesia, Vol. 23, 4, pp. 239-44. 2015.
     Google Scholar
  25. J. K. Prasain, S. H. Carlson. and J. M. Wyss, “Flavonoids and age-related disease: risk, benefits and critical windows.” Maturitas, Vol. 66, 2, 163-171. 2010.
     Google Scholar
  26. K. V. Sahidhara, M. Kumar, and A. Kumar, “A novel route to synthesis of flavones from salicylaldehyde and acetophenone derivatives”. Tetrahedron Letters, Vol. 53, 18, pp. 2355-2359. 2012.
     Google Scholar
  27. J. C. Ezhilarasi, P Nagarajan, J. Christy, and P. Pravabathy, “Corrosion Inhibitive and Adsorption Properties of a Flavonoid compound for Mild Steel in Acidic Medium”. Journal of the Korean Chemical Society, Vol. 55, 3, 495-501. 2011.
     Google Scholar
  28. D. Valavanis. D. Spanoudaki. C. Gkili, and D. Sazou. “Using recurence plots for the analysis of the nonlinear dynamical response of iron passivation-corrosion processes”. Chaos, Vol. 28, pp. 085708. 2018.
     Google Scholar
  29. M. Y. Díaz-Cardenas, M. G. Valladares-Cisneros, C. Menchaca-Campos, S. Lagunas-Rivera, J. G. Gonzalez-Rodríguez, J. Uruchurtu-Chavarín, “Electrochemical and chemical quantum studies of a natural alkaloid compound: Boldine, as green corrosion behaviour on carbon steel and Copper in sulfuric acid” J. Mater. Environ. Sci., Vol.10, 10, pp. 1011-1024. 2019.
     Google Scholar
  30. A. A. Aksüt. W. J. Lorenz, and F. Mansfeld, “The determination of corrosion rates by electrochemical dc and ac methods—II. Systems with discontinuous steady state polarization behavior”. Corrosion Science, Vol. 22, 7, pp. 611-619. 1982.
     Google Scholar
  31. H. Gabrielli. “Investigation of electrochemical processes by an electrochemical noise analysis. Theoretical and experimental aspects in potentiostatic regime.” Electrochimica Acta, Vol. 31, 8, pp. 1025-1039. 1986.
     Google Scholar
  32. E. Garcia, J. Uruchurtu, and J. Genesca, “Chaotic analysis of electrochemical noise response of copper,” Anales de Química, Vol. 94, 4-5, pp. 335–341, 1998.
     Google Scholar
  33. J. Uruchurtu, “Transient Behavior of Pure Aluminum During Noise Analysis”, NACE Conference in Localized Corrosion NACE-9, 1987.
     Google Scholar
  34. J. Uruchurtu Chavarin, “Electrochemical Investigations of the Activation Mechanism of Aluminum”. Corrosion, Vol. 47, 8, pp. 472-479, 1991.
     Google Scholar
  35. G. S. Frankel, and N. Sridhar, “Understanding localized corrosion”. Materials Today, Vol. 11, 10, pp. 38-44. 2008.
     Google Scholar
  36. W. J. Lorenz and F. Mansfeld. “Determination of corrosion rates by electrochemical DC and AC methods”. Corrosion. Science. Vol. 21, 9-10, pp. 647-672. 1981.
     Google Scholar
  37. A. Legat, and E. Govekar. “A comparison of spectral and chaotic analysis of electrochemical noise”. Electrochemical Noise Measurement for Corrosion Applications. ASTM. 1996.
     Google Scholar
  38. A. M. Homborg, T. Tinga, E. P. M. Van Westing, X. Zhang, G. M. Ferrari, J. H. W. de Witt, and J. M, “A Critical Appraisal of the Interpretation of Electrochemical Noise for Corrosion Studies”. Corrosion, Vol. 70, 10, pp. 971-987. 2014.
     Google Scholar
  39. B. P. Markhali., R. Naderi, M. Mahdavian, M. Sayebani, and S. Y. Arban, “Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media”. Corrosion Science, Vol. 75, 10, pp. 269-279, 2013.
     Google Scholar