##plugins.themes.bootstrap3.article.main##

The brine temperature (X1), the NaCl concentration (X2), the drying temperature (X3), and the drying time (X4) were the 4 parameters explored in this study, which aimed to model the OD-Drying coupling of fresh tomato. A 4 factors Box-Behnken experimental design associated to the response surface methodology (RSM). A transformation of the usual quadratic model was necessary to fit the experimental results. From the obtained models, relationships between the studied factors and the followed responses were establish. From the multicriteria optimization, the following conditions were found as optimal: X1 = 65 ?, X2 = 5%, X3 = 43.88 ? and X4 = 24h. The tomato powder obtained by reproduction of optimal conditions showed better properties than the tomato powder produced by local farmer by sun drying, but similar characteristics as the concentrate prepared from it. From the fresh tomato to the tomato powder obtain using the optimal conditions, the overall quality lost is relatively low.

Downloads

Download data is not yet available.

References

  1. R. Ndjouenkeu, “Opportunité d’amélioration de la qualité de la poudre de tomate pour couplage entre la déshydratation osmotique et le séchage,” in Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis. Actes du colloque, mai 2002, Garoua, Cameroun. Prasac, N’Djamena, Tchad - Cirad, Montpellier, France. Opportunité, 2003, p. 5p.
     Google Scholar
  2. E. E. Abano, H. Ma, and W. Qu, “Optimization of drying conditions for quality dried tomato slices using response surface methodology,” vol. 38, pp. 996–1009, 2014, doi: 10.1111/jfpp.12056.
     Google Scholar
  3. N. Lahmari and D. F. I. Azani, “Influence des méthodes de séchage sur la qualité des tomates séchées ( variété Zahra ),” vol. 15, pp. 285–295, 2012.
     Google Scholar
  4. Y. Jiokap Nono, M. Reynes, N. Zakhia, A. L. Raoult-Wack, and F. Giroux, “Mise au point d’un procédé combiné de déshydratation imprégnation par immersion et séchage de bananes (Musa acuminata groupe Cavendish),” J. Food Eng., vol. 55, no. 3, pp. 231–236, 2002, doi: 10.1016/S0260-8774(02)00080-8.
     Google Scholar
  5. A. Kamińska, P. P. Lewicki, and P. Malczyk, “Mass transfer in osmotically dehydrated apple stored at temperatures above zero,” J. Food Eng., vol. 86, no. 1, pp. 140–149, 2008, doi: 10.1016/j.jfoodeng.2007.09.020.
     Google Scholar
  6. J. S. Souza, M. F. D. Medeiros, M. M. A. Magalha, S. Rodrigues, and F. A. N. Fernandes, “Optimization of osmotic dehydration of tomatoes in a ternary system followed by air-drying,” vol. 83, pp. 501–509, 2007, doi: 10.1016/j.jfoodeng.2007.03.038.
     Google Scholar
  7. P. Pani, A. Avitabile, M. Riva, A. Maestrelli, and D. Torreggiani, “Influence of an osmotic pre-treatment on structure-property relationships of air-dehydrated tomato slices,” vol. 86, pp. 105–112, 2008, doi: 10.1016/j.jfoodeng.2007.09.017.
     Google Scholar
  8. A. M. Goula, T. D. Karapantsios, D. S. Achilias, and K. G. Adamopoulos, “Water sorption isotherms and glass transition temperature of spray dried tomato pulp,” J. Food Eng., vol. 85, no. 1, pp. 73–83, 2008, doi: 10.1016/j.jfoodeng.2007.07.015.
     Google Scholar
  9. A. Ferradji, F. S. A. Chaouche, D. Belhachat, and A. Malek, “Optimization of osmotic dehydration of tomatoes slices in salt and sucrose solutions using response surface methodology,” vol. 18, pp. 539–549, 2015.
     Google Scholar
  10. C. V. P. Tsamo, A. F. Bilame, R. Ndjouenkeu, and Y. J. Nono, “Study of material transfer during osmotic dehydration of onion slices (Allium cepa) and tomato fruits (Lycopersicon esculentum),” LWT - Food Sci. Technol., vol. 38, no. 5, pp. 495–500, 2005, doi: 10.1016/j.lwt.2004.07.015.
     Google Scholar
  11. M. Agassounon Djikpo Tchibozo, S. Gomez, F. Tchobo, M. Soumanou, and F. Toukourou, “Essai de conservation de la tomate par la technique de la déshydratation imprégnation par immersion (DII),” Int. J. Biol. Chem. Sci., vol. 6, no. 2, pp. 657–669, 2012, doi: 10.4314/ijbcs.v6i2.10.
     Google Scholar
  12. S. L. C. Ferreira et al., “Box-Behnken design : An alternative for the optimization of analytical methods,” vol. 597, pp. 179–186, 2007, doi: 10.1016/j.aca.2007.07.011.
     Google Scholar
  13. Codex Stan, “La dénomination « concentré de tomates traité » désigne le produit: (a) préparé par concentration du liquide 1 , ou de la pulpe, extrait de tomates substantiellement saines, mûres et rouges (,” pp. 1–6, 2013.
     Google Scholar
  14. AOAC (Association of Official Agricultural Chemists), Official methods of analyses, 15th ed. Washington, DC, 1990.
     Google Scholar
  15. J. Wolff, Manuel d’analyse des corps gras. Paris (France): Azoulay éd., 1968.
     Google Scholar
  16. AFNOR (Association Française de Normalisation), Recueil des normes françaises des produits dérivés des fruits et légumes. Jus de fruits., 1ére éditi. 1982.
     Google Scholar
  17. J. M. Gould, B. K. Jasberg, L. . Dexter, J. T. Hsu, S. M. Lewis, and J. R. Fahey, “High-fibre, Noncalorie flour substitute for baked foods. Effect of alkaline peroxide-treated lignolcellulose on dough properties,” Cereal Chem., vol. 66, no. 3, pp. 201–205, 1989.
     Google Scholar
  18. A. D. Bettge, C. F. Morris, V. L. DeMacon, and K. K. Kidwell, “Adaptation of AACC Method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development,” Cereal Chem., vol. 79, no. 5, pp. 670–674, 2002, doi: 10.1094/CCHEM.2002.79.5.670.
     Google Scholar
  19. A. M. Joglekar and A. T. May, “Product Excellence through Design of Experiments,” Cereal Foods World, vol. 32, pp. 857–868, 1987.
     Google Scholar
  20. D. Baş and I. H. Boyaci, “Modeling and optimization i: Usability of response surface methodology,” J. Food Eng., vol. 78, no. 3, pp. 836–845, 2007, doi: 10.1016/j.jfoodeng.2005.11.024.
     Google Scholar
  21. P. Dalgaard and L. Vigel Jørgensen, “Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon,” Int. J. Food Microbiol., vol. 40, no. 1–2, pp. 105–115, 1998, doi: 10.1016/S0168-1605(98)00019-1.
     Google Scholar
  22. Konica Minolta, “Analyse des couleurs, parlons clair,” The essentials of imaging, p. 46p, 2003.
     Google Scholar
  23. CEE-ONU, “Norme CEE-ONU (Commission Economique des Nations Unies pour L’Europe) DDP-19 concernant la commercialisation et le contrôle de la qualité commerciale des tomates séchées.,” p. 8p, 2007.
     Google Scholar
  24. K. Kone, Amélioration de la qualité de la tomate séchée par microondes assistés par air chaud avec pilotage de la puissance spécifique Kisselmina Kone To cite this version : HAL Id : pastel-00771870 L ’ Institut des Sciences et Industries du Vivant et de l ’ Envir. 2013.
     Google Scholar