##plugins.themes.bootstrap3.article.main##

The electrochemical behavior of the corrosion resistance of AISI 304 embedded in concrete manufactured as indicated by the ACI 211.1 method was evaluated. The specimens were exposed for more than 150 days to highly aggressive marine-sulfated environment, solution with a concentration of 5% NaCl and 5% Na2SO4. The electrochemical technique of Resistance to Linear Polarization (Rp) was used for to determine the corrosion rate (Icorr) and monitoring of corrosion potential (Ecorr). The Ecorr and Icorr results indicate a high level of corrosion for AISI 1018 steel, on the contrary, the electrochemical behaviour of AISI 304 steel according to the values of Ecorr and Icorr, indicate a corrosion resistance of up to 10 times higher when exposed to an environment with a high concentration of chlorides and sulfates.

Downloads

Download data is not yet available.

References

  1. Hassi S, Menu B, Touhami ME. The Use of the Electrochemical Impedance Technique to Predict the Resistance to Chloride Ingress in Silica Fume and Fly Ash-Reinforced Blended Mortars Exposed to Chloride or Chloride–Sulfate Solutions. Journal of Bio- and Tribo-Corrosion. 2022;8:13. DOI: 10.1007/s40735-021-00609-1.
     Google Scholar
  2. Baltazar-Zamora MA, Márquez-Montero S, Landa-Ruiz L, Croche R, López-Yza O. Effect of the type of curing on the corrosion behavior of concrete exposed to the urban and marine environment. European Journal of Engineering Research and Science. 2020;5(1):91-95. DOI: 10.24018/ejeng.2020.5.1.1716.
     Google Scholar
  3. Sagñay S, Bautista A, Donaire J, Torres-Carrasco M, Bastidas DM, Velasco F. Chloride-induced corrosion of steel reinforcement in mortars manufactured with alternative environmentally-friendly binders. Cement and Concrete Composites. 2022;130:104557. DOI: 10.1016/j.cemconcomp.2022.104557.
     Google Scholar
  4. Volpi-León V, López-Léon LD, Hernández-Ávila J, Baltazar-Zamora MA, Olguín-Coca FJ, López-León AL. Corrosion study in reinforced concrete made with mine waste as a mineral additive. International Journal of Electrochemical Science. 2017;12(1):22-31. DOI: 10.20964/2017.01.08.
     Google Scholar
  5. Rabi M, Shamass R, Cashell KA. Structural performance of stainless steel reinforced concrete members: A review. Construction and Building Materials. 2022;325:126673. DOI: 10.1016/j.conbuildmat.2022.126673.
     Google Scholar
  6. Troconis de Rincón O, Montenegro JC, Vera R, Carvajal AM, de Gutiérrez RM, Del Vasto S, Saborio E, et. al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion. 2016 ;72(6):824-833. DOI: 10.5006/1893.
     Google Scholar
  7. Xiao T, Du C, Liu Y. Electrochemical Evaluation on Corrosion Behavior of SAF 2507 Duplex Stainless Steels in Blended Concrete with Metakaolin and ultrafine Slag Admixtures. International Journal of Electrochemical Science. 2021;16:210642. DOI: 10.20964/2021.06.15.
     Google Scholar
  8. Landa-Ruiz L, Croche R, Santiago-Hurtado G, Moreno-Landeros V, Cuevas J, Méndez CT, Jara-Díaz M, et. al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. European Journal of Engineering and Technology Research. 2021;6(3):139-145. DOI: 10.24018/ejeng.2021.6.3.2423.
     Google Scholar
  9. Raczkiewicz W. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. Science and Engineering of Composite Materials. 2021;28(1):555–567. DOI: 10.1515/secm-2021-0053
     Google Scholar
  10. Bautista A, Blanco G, Velasco F. Corrosion behaviour of low-nickel austenitic stainless steels reinforcements: A comparative study in simulated pore solutions. Cement and Concrete Research. 2006; 36(10):1922–1930. DOI: 10.1016/j.cemconres.2005.10.009
     Google Scholar
  11. Rameshkumar M, Malathy R, Chandiran P, Paramasivam S, Chung IM, KimSH, PrabakaranM.Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric. Polymers. 2022;14(19):4093. DOI: 10.3390/polym14194093
     Google Scholar
  12. Baltazar-Zamora MA, Santiago-Hurtado G, Gaona-Tiburcio C, Maldonado-Bandala EE, Barrios-Durstewist CP, Núñez-J RE, Pérez-López T, et. al. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science. 2012;7(1):588-600.
     Google Scholar
  13. Zhang Q, Li H, Feng H, Jiang T. Effect of Bagasse Ash Admixture on Corrosion Behavior of Low Carbon Steel Reinforced Concrete in Marine Environment. International Journal of Electrochemical Science. 2020;15(7): 6135–6142. DOI: 10.20964/2020.07.65
     Google Scholar
  14. Santiago-Hurtado G, Baltazar-Zamora MA, Galván-Martínez R, López L LD, Zapata G F, Zambrano P, Gaona-Tiburcio C, et. al. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science. 2016;11(6):4850-4864. DOI: 10.20964/2016.06.31
     Google Scholar
  15. Pan C, Li X, Mao J. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 2020; 13:1480. DOI: 10.3390/ma13061480
     Google Scholar
  16. Landa-Ruiz L, Ariza-Figueroa H, Santiago-Hurtado G, Moreno-Landeros V, López Meraz R, Villegas-Apaez R, Márquez-Montero S, et. al. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science. 2020;5(11):1353-1356. DOI: 10.24018/ejeng.2020.5.11.2241
     Google Scholar
  17. Gaona Tiburcio C, Samaniego-Gámez O, Jáquez-Muñoz JM, Baltazar-Zamora MA, Landa-Ruiz L, Lira-Martínez A, Flores-De los Rios JP, et. al. Frequency-Time Domain Analysis of Electrochemical Noise of Passivated AM350 Stainless Steel for Aeronautical Applications. International Journal of Electrochemical Science. 2022;17(9):220950. DOI: 10.20964/2022.09.49.
     Google Scholar
  18. Baltazar-Zamora MA, Mendoza-Rangel JM, Croche R, Gaona-Tiburcio C, Hernández C, López L, Olguín F, et. al. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials. 2019;6:1-12. DOI: 10.3389/fmats.2019.00257.
     Google Scholar
  19. Roventi G, Bellezze T, Giuliani G, Conti C. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet–dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research. 2014;65:76–84. DOI: j.cemconres.2014.07.014
     Google Scholar
  20. Santiago-Hurtado G, Baltazar-Zamora MA, Olguin-Coca J, López L LD, Galván-Martínez R, Ríos-Juárez A, Gaona-Tiburcio C, et. al. Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science. 2016;11(4):2994-3006. DOI: 10.20964/110402994
     Google Scholar
  21. Yeomans SR. Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride- Contaminated Concrete. Corrosion. 1994;50(1):72–81.
     Google Scholar
  22. Baltazar-Zamora MA, Santiago-Hurtado G, Moreno L VM, Croche B R, de la Garza M, Estupiñan L F, Zambrano R P, et. al, Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science. 2016;11(12):10306-10319. DOI: 10.20964/2016.12.28
     Google Scholar
  23. Dehwah HAF, Maslehuddin M, Austin SA. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites. 2002;24(1):17–25. DOI: 10.1016/S0958-9465(01)00023-3
     Google Scholar
  24. Baltazar-Zamora MA, Ariza-Figueroa H, Landa-Ruiz L, Croche R. Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science. 2020;5(3):353-357. DOI: 10.24018/ejeng.2020.5.3.1852
     Google Scholar
  25. Wang D, Zhao X, Meng Y, Chen Z. Durability of concrete containing ?y ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials. 2017;147: 398–406. DOI: 10.1016/j.conbuildmat.2017.04.172.
     Google Scholar
  26. Liang MT, Lan JJ. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cement and Concrete Research. 2005;35(3):540–550. DOI: 10.1016/j.cemconres.2004.05.010.
     Google Scholar
  27. Baltazar-Zamora MA, Landa-Ruiz L, Rivera Y, Croche R. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 2020;5(3):259-263. DOI: 10.24018/ejeng.2020.5.3.1789.
     Google Scholar
  28. Farhangi V, Karakouzian M. Effect of ?ber reinforced polymer tubes ?lled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences. 2020;10:1554. DOI: 10.3390/app10051554.
     Google Scholar
  29. Castaneda-Robles IE, López-León LD, Moreno-Landeros VM, Baltazar-Zamora MB, Olguín-Coca FJ, Lizárraga-Mendiola LG. Electrochemical behavior of carbon steel under a continuous kerosene flow in two different kind of sections. International Journal of Electrochemical Science. 2018;13(9):9039–9050. DOI: 10.20964/2018.09.36.
     Google Scholar
  30. Cosoli G, Mobili A, Tittarelli F, Revel GM, Chiariotti P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 2020;10: 9152. DOI:doi.org/10.3390/app10249152.
     Google Scholar
  31. Baltazar-Zamora MA, Bastidas DM, Santiago-Hurtado G, Mendoza-Rangel JM, Gaona-Tiburcio C, Bastidas JM, Almeraya-Calderón F. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel). 2019;12(23):1-13. DOI: 10.3390/ma12234007.
     Google Scholar
  32. Figueira RB. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences. 2017;7:1157. DOI: 10.3390/app7111157.
     Google Scholar
  33. Landa-Ruiz L, Landa-Gómez A, Mendoza-Rangel JM, Landa-Sánchez A, Ariza-Figueroa H, Méndez-Ramírez CT, Santiago-Hurtado G, et. al. Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals. 2021;11:1012. DOI: 10.3390/cryst11091012.
     Google Scholar
  34. Ormellese M, Berra M, Bolzoni F, Pastore T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 2006;36(3):536–547. DOI: j.cemconres.2005.11.007.
     Google Scholar
  35. M.A. Baltazar-Zamora et. al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science. 2012;7(4):2997-3007.
     Google Scholar
  36. Shaheen F, Pradhan B. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research. 2017;91:73–86. DOI: j.cemconres.2016.10.008.
     Google Scholar
  37. Landa-Ruiz L, Baltazar-Zamora MB, Bosch J, Ress J, Santiago-Hurtado G, Moreno-Landeros VM, Márquez-Montero S, et. al. Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences. 2021;11:2133. DOI: 10.3390/app11052133.
     Google Scholar
  38. Burtuujin G, Son D, Jang I, Yi C, Lee H. Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences. 2020;10:8705. DOI: 10.3390/app10238705.
     Google Scholar
  39. Baltazar-Zamora MA, Landa-Sánchez A, Landa-Ruiz L, Ariza-Figueroa H, Gallego-Quintana P, Ramírez-García A, Croche R, et. al. Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science. 2020;5(2):127-131. DOI: 10.24018/ejers.2020.5.2.1751
     Google Scholar
  40. Xu P, Jiang L, Guo M, Zha J, Chen L, Chen C, Xu N. In?uence of sulfate salt type on passive ?lm of steel in simulated concrete pore solution. Construction and Building Materials. 2019;223:352–359. DOI: j.conbuildmat.2019.06.209
     Google Scholar
  41. Baltazar-Zamora MA, Landa-Ruiz L, Landa-Gómez AE, Santiago-Hurtado G, Moreno-Landeros V, Méndez Ramírez CT, Fernandez Rosales V, et. al. Corrosion of AISI 316 Stainless Steel Embedded in Green Concrete with Low Volume of Sugar Cane Bagasse Ash and Silica Fume exposed in Seawater. European Journal of Engineering and Technology Research. 2022;7(1):57-62. DOI: 10.24018/ejeng.2022.7.1.2716
     Google Scholar
  42. Abdall TA, Koteng DO, Shitote SM, Matallah M. Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results in Engineering. 2022;16:1-13. DOI:10.1016/j.rineng.2022.100666
     Google Scholar
  43. Landa-Ruiz L, Márquez-Montero S, Santiago-Hurtado G, Moreno-Landeros V, Mendoza-Rangel JM, Baltazar-Zamora MA. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research. 2021;6(1):76–79. DOI:10.24018/ejeng.2021.6.1.2335.
     Google Scholar
  44. Abdall TA, Koteng DO, Shitote SM, Matallah M. Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash. Civil Engineering Journal. 2022; 8(6):1227-1239. DOI: 10.28991/CEJ-2022-08-06-010
     Google Scholar
  45. Ojeda-Farías O, Mendoza-Rangel JM, Baltazar-Zamora MA. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT. 2018;8(2):194-208. DOI: 10.21041/ra.v8i2.282.
     Google Scholar
  46. ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, Mexico (2004).
     Google Scholar
  47. ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org.
     Google Scholar
  48. ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  49. ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  50. ASTM C136 / C136M –14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA, 2014, www.astm.org.
     Google Scholar
  51. NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).
     Google Scholar
  52. ASTM C 1064/C1064M - 08 Standard, (2008). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, 2008, www.astm.org.
     Google Scholar
  53. NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).
     Google Scholar
  54. NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).
     Google Scholar
  55. Baltazar-García BP, Baltazar-Zamora DF, Landa-Ruiz L, Méndez CT, Solorzano R, Reyes J, Márquez S, et. al. Corrosion Behavior of AISI 1018 Reinforcing Steel in Sustainable Concrete made with Sugar Cane Bagasse Ash and Recycled Aggregates Exposed in Seawater. European Journal of Engineering and Technology Research. 2022;7(6):101-107. DOI: 10.24018/ejeng.2022.7.6.2930.
     Google Scholar
  56. ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.
     Google Scholar
  57. Barrios Durstewitz CP, Baldenebro López FJ, Núñez Jaquez RE, Fajardo G, Almeraya F, Maldonado-Bandala E, Baltazar-Zamora M, et. al. Cement Based Anode in the Electrochemical Realkalisation of Carbonated Concrete. International Journal of Electrochemical Science. 2012;7(4):3178 – 3190.
     Google Scholar
  58. Feliu S, González JA, Andrade C, Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.
     Google Scholar
  59. Gaona-Tiburcio C, Montoya-Rangel M, Cabral-Miramontes JA, Estupiñan-López F, Zambrano-Robledo P, Orozco Cruz R , Chacón-Nava JG, et.al. Corrosion Resistance of Multilayer Coatings Deposited by PVD on Inconel 718 Using Electrochemical Impedance Spectroscopy Technique. Coatings. 2020;10:521. DOI. 10.3390/coatings10060521.
     Google Scholar
  60. Cabral-Miramontes JA, Bastidas DM, Baltazar MA, Zambrano-Robledo P, Bastidas JM, Almeraya-Calderón FM, Gaona-Tiburcio C. Corrosion behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl solution. International Journal of Electrochemical Science. 2019;14(5): 4226 – 4239. DOI: 10.20964/2019.05.10
     Google Scholar
  61. ASTM C 876-15, Standard Test Method for Corrosion potentials of uncoated reinforcing steel in concrete, ASTM (2015).
     Google Scholar
  62. Song HW, Saraswathy V. Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science. 2007; 2(1):1-28.
     Google Scholar
  63. Ariza-Figueroa HA, Bosch J, Baltazar-Zamora MA, Croche R, Santiago-Hurtado G, Landa-Ruiz L, Mendoza-Rangel JM, Bastidas JM, et.al. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel). 2020;13(10):1-16. DOI: 10.3390/ma13102412.
     Google Scholar
  64. Chakraborty S, Mandal R, Chakraborty S, Guadagnini M, Pilakoutas K. Chemical attack and corrosion resistance of concrete prepared with electrolyzed water. Journal of materials research and technology. 2021; 11: 1193-1205. DOI: 10.1016/j.jmrt.2021.01.101.
     Google Scholar
  65. Jee AA, Pradhan B. Long term effect of chloride and sulfates concentration, and cation allied with sulfates on corrosion performance of steel-reinforced in concrete. Journal of Building Engineering. 2022; 56: 104813. DOI: 10.1016/ j.jobe.2022.104813.
     Google Scholar
  66. Troconis De Rincón O, Helene P, Castro P, Andrade C. Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997).
     Google Scholar
  67. Baltazar-García BP, Baltazar-Zamora DF, Landa-Ruiz L, Méndez CT, Solorzano R, Estupiñan López FH, Croche R, et. al. Eco-Friendly Concrete Made with System CPC-SCBA-SF As a Protector Against Sulfate Corrosion of Reinforcing Steel AISI 1018. European Journal of Engineering and Technology Research. 2022;7(6):14-20. DOI: 10.24018/ejeng.2022.7.6.2911.
     Google Scholar
  68. Landa-Sánchez A, Bosch J, Baltazar-Zamora MA, Croche R, Landa-Ruiz L, Santiago-Hurtado G, Moreno-Landeros VM, et. al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel). 2020;13(19):1-22. DOI: 10.3390/ma13194345.
     Google Scholar
  69. Zhang F, Hu Z, Wei F, Wen X, Li X, Dai L, Liu L. Study on Concrete Deterioration in Different NaCl-Na2SO4 Solutions and the Mechanism of Cl? Diffusion. Materials (Basel). 2020;14(17):5054. DOI: 10.3390/ma14175054.
     Google Scholar
  70. Sun H, Jiang C, Cao K, Yu D, Liu W, Zhang X, Xing F, et. al. Monitoring of steel corrosion and cracking in cement paste exposed to combined sulfate–chloride attack with X-ray microtomography. Construction and Building Materials. 2021;302:124345. DOI: 10.1016/j.conbuildmat.2021.04.124345.
     Google Scholar


Most read articles by the same author(s)

1 2 > >>