##plugins.themes.bootstrap3.article.main##

Wireless Power Transfer (WPT) can be described as the processing of transmitting electricity without the use of wires. It has been increasingly used in places where battery depletion and replacement are major issues. WPT Technology are being used in different sectors. They include wireless charging, Electric vehicles, consumer electronics, etc. The paper describes the various types of WPT technologies; Inductive Coupling, Magnetic Resonance and Radio Frequency (RF) technology. It also discusses the advantages and shortfalls of each type. An extensive survey of past works was discussed. Results from the research findings showed that distance and conversion efficiency were limiting factors in implementing wireless transfer technology.

Downloads

Download data is not yet available.

References

  1. Palazzi V, Prete M Del, Marco F. Scavenging for Energy. IEEE Microwave Magazine, 2016;(February):91–9.
    DOI  |   Google Scholar
  2. Fantuzzi M, Massotti D, Costanzo A. Electromagnetic prediction of antenna layout impact on UWB localization and sensing. In: 2015 5th International EURASIP Workshop on RFID Technology, EURFID, pp. 16-21, 2015.
    DOI  |   Google Scholar
  3. Fareq M, Fitra M, Irwanto M, Hasan S, Arinal M. Low wireless power transfer using Inductive Coupling for mobile phone charger. J Phys Conf Ser., 2014;495(1):1–5.
    DOI  |   Google Scholar
  4. Lu X, Wang P, Niyato D, Kim DI, Han Z. Wireless Charging Technologies: Fundamentals, Standards, and Network Applications. IEEE Commun Surv Tutorials, 2016;18(2):1413–52.
    DOI  |   Google Scholar
  5. Gaire P, Vital D, Khan MR, Chibane C, Bhardwaj S. Adhoc mobile power connectivity using a wireless power transmission grid. Sci Rep [Internet]. 2021;11(1):1–10. https://doi.org/10.1038/s41598-021-97528-5.
    DOI  |   Google Scholar
  6. Zan X, Avestruz AT. Wireless power transfer for implantable medical devices using piecewise resonance to achieve high peak-To-Average power ratio. 2017 IEEE 18th Work Control Model Power Electron COMPEL, 2017.
    DOI  |   Google Scholar
  7. Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans Microw Theory Tech., 2016;64(2):633–42.
    DOI  |   Google Scholar
  8. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science (80- ), 2007 Jul 6;317(5834):83–6. https://doi.org/10.1126/science.1143254.
    DOI  |   Google Scholar
  9. Tran LG, Cha HK, Park WT. RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst Lett. 2017;5(1).
    DOI  |   Google Scholar
  10. Hashim NMZ. Traffic Light Control System for Emergency Vehicles Using Radio Frequency. IOSR J Eng. 2013 Jul 1;3:43–52.
    DOI  |   Google Scholar
  11. Jawad AM, Nordin R, Gharghan SK, Jawad HM, Ismail M. Opportunities and challenges for near-field wireless power transfer: A review. Energies. 2017;10(7):1–30.
    DOI  |   Google Scholar
  12. Jang B-J, Lee S, Yoon H. HF-band wireless power transfer system: Concept, issues, and design. Prog Electromagn Res. 2012 Jan 1;124.
    DOI  |   Google Scholar
  13. Mayordomo I, Dräger T, Alayón JA, Bernhard J. Wireless power transfer for sensors and systems embedded in fiber composites. In: 2013 IEEE Wireless Power Transfer (WPT). 2013. p. 107–10.
    DOI  |   Google Scholar
  14. Shin J, Shin S, Kim Y, Ahn S, Lee S, Jung G, et al. Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles. IEEE Trans Ind Electron. 2014;61(3):1179–92.
    DOI  |   Google Scholar
  15. Tachikawa K, Kesler M, Atasoy O. Feasibility Study of Bi-directional Wireless Charging for Vehicle-to-Grid, 2018.
    DOI  |   Google Scholar
  16. Choi J, Ryu Y-H, Kim D, Kim N, Yoon C, Park Y-K, et al. Design of high efficiency wireless charging pad based on magnetic resonance coupling. 2012. p. 590–3.
    DOI  |   Google Scholar
  17. Leung AOW, Luksemburg WJ, Wong AS, Wong MH. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ Sci Technol. 2007 Apr;41(8):2730–7.
    DOI  |   Google Scholar
  18. Jia ZW, Zhu B. A new type receiving set of wireless power transmission systems for gastrointestinal robot. In: 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW). 2015. p. 1–4.
     Google Scholar
  19. Williams D. On Optimal AUV Track-Spacing for Underwater Mine Detection. In: IEEE Internat Conf on Robotics and Automation. 2010. p. 4755–62.
    DOI  |   Google Scholar
  20. Abou Houran M, Yang X, Chen W. Magnetically Coupled Resonance WPT: Review of Compensation Topologies, Resonator Structures with Misalignment, and EMI Diagnostics. Electronics, 2018; 7.
    DOI  |   Google Scholar
  21. Park C, Lee S, Cho GH, Rim CT. Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans Power Electron. 2015;30(2):817–27.
    DOI  |   Google Scholar
  22. Rashid NA, Yasin MNM, Kamardin K, Ramli N, Jusoh M, Murad SAZ, et al. A study on Relay Effect via Magnetic Resonant Coupling for Wireless Power Transfer. MATEC Web Conf., 2016. https://doi.org/10.1051/matecconf/20167801095.
    DOI  |   Google Scholar
  23. Ha-Van N, Seo C. Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter. IEEE Trans Ind Electron. 2017;65(2):1358–66.
    DOI  |   Google Scholar
  24. Wang M, Feng J, Shi Y, Shen M, Jing J. A novel PSO-based transfer efficiency optimization algorithm for wireless power transfer. Prog Electromagn Res C. 2018;85(April):63–75.
    DOI  |   Google Scholar
  25. Das Barman S, Wasif Reza A, Kumar N. Coupling Tuning Based Impedance Matching for Maximum Wireless Power Transfer Efficiency. J Comput Sci Comput Math. 2016;(December):91–6.
    DOI  |   Google Scholar
  26. Alam S Bin, Ullah MS, Moury S. Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna. In: 2013 International Conference on Informatics, Electronics and Vision, ICIEV, pp. 2-5, 2013.
    DOI  |   Google Scholar
  27. Zhang X, Zhang X, Zhang C, Yao S, Qi H, Xu Y. Optimal design and analysis of wireless power transfer system with converter circuit. Eurasip J Wirel Commun Netw. 2017;2017(1):1–6.
     Google Scholar
  28. Yeap KH, Cheah ARC, Hirasawa K, Yeong KC, Lai KC, Nisar H. Optimization of wireless power transmission systems with parasitic wires. Appl Comput Electromagn Soc J. 2017;32(9):806–12.
     Google Scholar
  29. Zhu F, Tang Y, Cao P, Ma H. A method of resonant frequency optimized selection for a SP inductive coupled power transfer system. In: 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), p. 1–5, 2017.
    DOI  |   Google Scholar
  30. Sultana G, T.R D, Bhushan P, Azeem M, G.N S. Design and Implementation of Wireless Power Transfer Charging System on Miniature Model. Int J Electr Electron Eng. 2016;3(4):45–9.
    DOI  |   Google Scholar
  31. Atayero AA, Ajijola O, Popoola SI, Matthews VO. Development of a wireless power transfer system using resonant inductive coupling. In: World Congress on Engineering and Computer Science. San Francisco, p. 1–8, 2016.
     Google Scholar
  32. Wang H, Deng L, Luo H, Du J, Zhou D, Huang S. Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array. Energies. 2021;14(2):415.
    DOI  |   Google Scholar
  33. Yang J, Shi Y, Wei WY, Shen H. A wireless power transfer system based on impedance matching network. Int J RF Microw Comput Eng. 2020;30(12):1–10.
    DOI  |   Google Scholar
  34. Zhang X, Zhang X, Zhang C, Yao S, Qi H, Xu Y. Optimal design and analysis of wireless power transfer system with converter circuit. EURASIP J Wirel Commun Netw. 2017;2017(1):27. Available from: https://doi.org/10.1186/s13638-017-0813-7.
    DOI  |   Google Scholar
  35. Hsieh YC, Lin ZR, Chen MC, Hsieh HC, Liu YC, Chiu HJ. High-Efficiency Wireless Power Transfer System for Electric Vehicle Applications. IEEE Trans Circuits Syst II Express Briefs. 2017;64(8):942–6.
    DOI  |   Google Scholar
  36. Ahn D, Kim S, Moon J, Cho IK. Wireless Power Transfer With Automatic Feedback Control of Load Resistance Transformation. IEEE Trans Power Electron. 2016;31(11):7876–86.
    DOI  |   Google Scholar
  37. Beh T, Kato M, Imura T, Hori Y. EVS25 World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency-Power Transfer System Based on Impedance Matching. World Electr Veh J. 2010;4:744–53.
    DOI  |   Google Scholar
  38. Nataraj C, Khan S, Habaebi MH, Muthalif AGA, Lakshmanan R. Development Of Wireless Power Transfer system using resonance principle with security features. IIUM Eng J. 2017;18(2):117–27.
    DOI  |   Google Scholar
  39. Hu B, Li H, Li T, Wang H, Zhou Y, Zhao X, et al. A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier. Energy Reports. 2021;7:1154–61. https://doi.org/10.1016/j.egyr.2020.12.026.
    DOI  |   Google Scholar
  40. Ye W, Chen L, Liu F, Chen X, Wang X. Analysis and optimization of 3-coil magnetically coupled resonant wireless power transfer system for stable power transmission. In: 2017 IEEE Energy Conversion Congress and Exposition, ECCE, 2017. p. 2584–9.
    DOI  |   Google Scholar
  41. Chaturvedi S, Tripathi ES, Engineering E. Modelling & Analysis of High-Power. High-Frequency Wireless Power Transmission. 2017;p. 2732–7.
     Google Scholar
  42. Rosa R La, Zoppi G, Finocchiaro A, Papotto G, Di Donato L, Sorbello G, et al. An over-the-distance wireless battery charger based on RF energy harvesting. SMACD 2017-14th Int Conf Synth Model Anal Simul Methods Appl to Circuit Des. 2017;5–8.
    DOI  |   Google Scholar
  43. Okello JO, Habibu T. Design of Mobile Phone Charging Power Source Using Microwave Harvesting. J Inf Syst Eng Manag. 2020;5(2):em0116.
    DOI  |   Google Scholar
  44. Krishnamoorthy R, Umapathy K. Mobile Phone Charger Using RF Through GSM Network. Middle-East J Sci Res. 2017;25(3):600–2.
     Google Scholar
  45. Mung DL, Lwin KS, Tun HM. Design And Construction Of Wireless Charging System Using Inductive Coupling. Int J Sci Technol Res. 2015;4(6):282–7.
     Google Scholar
  46. Liu M, Chen M. Dual-band multi-receiver wireless power transfer: Architecture, topology, and control. In: Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC. 2019. p. 851–9.
    DOI  |   Google Scholar
  47. Saha C, Anya I, Alexandru C, Jinks R. Wireless power transfer using relay resonators. Appl Phys Lett. 2018;112(26).
    DOI  |   Google Scholar
  48. Sharma N, Bheda T, Chaudhary R, Mohit, Shabana U. Wireless Power transfer using Microwaves. In: Advances in Intelligent Systems and Computing. 2018. p. 307–11.
    DOI  |   Google Scholar
  49. Ma H, Li X, Sun L, Xu H, Yang L. Design of High-Efficiency Microwave Wireless Power Transmission System. Microw Opt Technol Lett. 2016;58(7):1704–7.
    DOI  |   Google Scholar
  50. Abbasi MI, Adnan SA, Amin M, Kamran F. Wireless power transfer using microwaves at 2.45 GHz ISM band. Proc 6th Int Bhurban Conf Appl Sci Technol IBCAST-2009. 2009;2(January):99–102.
     Google Scholar
  51. Khoury P. A Power-Efficient Radio Frequency Energy Harvesting Circuit. University of Ottawa; 2013.
     Google Scholar
  52. Zhang J, Huang yi, Cao P. A microwave wireless energy harvesting system with a wideband antenna array. Trans Inst Meas Control. 2015;37(8):961–9.
    DOI  |   Google Scholar
  53. Sajeed M, Gurav S, Sayali P, Hitesh D. Design of RF Energy Harvesting Antenna using Optimization Techniques. Int J Eng Res. 2020;V9(03):3274–8.
    DOI  |   Google Scholar
  54. Srinivasul R. RF Energy Harvesting for Low Power Devices. Int J Adv Res Electr Electron Instrum Eng. 2012;1(1):77–82.
    DOI  |   Google Scholar
  55. Benkalfate C, Feham M, Ouslimani A, Kasbari A. Investigation on the RF and microwave energy harvesting from wireless and mobile communication networks. In: 2019 International Symposium on Networks, Computers and Communications, ISNCC. Istanbul, Turkey: IEEE; 2019. p. 1–6.
    DOI  |   Google Scholar
  56. Dinesh KS, Veeramani R. Harvesting Microwave Signal Power From the Ambient Environment. Int J Commun Comput Technol. 2019;4(2):76–81.
    DOI  |   Google Scholar
  57. Hilario Re PD, Podilchak SK, Rotenberg SA, Goussetis G, Lee J. Circularly Polarized Retrodirective Antenna Array for Wireless Power Transmission. IEEE Trans Antennas Propag. 2020;68(4):2743–52.
    DOI  |   Google Scholar
  58. Almorabeti S, Hanaoui M, Rifi M, Terchoune H. Microstrip patch antennas at 5.8GHz for wireless power transfer system to a MAV. In: ACM International Conference Proceeding Series. 2017.
    DOI  |   Google Scholar
  59. Li KR, See KY, Koh WJ, Zhang JW. Design of 2.45 GHz microwave wireless power transfer system for battery charging applications. In: Progress in Electromagnetics Research Symposium. 2017. p. 2417–23.
    DOI  |   Google Scholar
  60. Delhaye TP, Andre N, Gilet S, Gimeno C, Francis LA, Flandre D. High-efficiency wireless power transfer for mm-size biomedical implants. In: Proceedings of IEEE Sensors. 2017. p. 1–3.
    DOI  |   Google Scholar
  61. Li Q, Zhang Z, Mao J. Design of Wireless Power Transfer with High Efficiency for Biomedical Implants. J Beijing Inst Technol (English Ed.). 2022;31(1):53–60.
     Google Scholar
  62. Zhong WX, Hui SYR. Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans Power Electron. 2015;30(7):4025–34.
    DOI  |   Google Scholar


Most read articles by the same author(s)