##plugins.themes.bootstrap3.article.main##

Military training activities as well as manufacturing and decommissioning operations, lead to the generation of large quantities of explosive chemicals. Detonation and disposal of these explosive chemicals contaminate soil and ground water, thus posing a threat to living organisms and natural resources. The most commonly used explosives in artillery shells, bombs, grenades and other munitions are 2,4,6-Trinitrotoluene (TNT), Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Due to their recalcitrant nature, toxicity and persistence in the environment, the study of their biodegradation and biotransformation is paramount. This paper reviews the chemistry, fate, degradation and transformation of this explosive chemicals in the natural environment. Emphasis is placed on TNT, RDX and HMX. This review will help scientists to adopt strategies and develop optimum biological treatment scheme for the in situ bioremediation of explosives-contaminated soil especially at firing/impact ranges.

Downloads

Download data is not yet available.

References

  1. Spain J.C. (1995). Biodegradation of nitroaromatic compounds. Annu Rev Microbiol. 49:523-555.
     Google Scholar
  2. Hawari J, Beaudet S,Halasz A,Thiboutot S,Ampleman G. (2000).Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol. 54:605-618.
     Google Scholar
  3. Rieger, P.; Knackmuss, H. J. (1995). Biodegradation of nitroaromatic compounds; Spain, J. C., Ed.; Plenum Publishing Co.: New York, pp 1-18
     Google Scholar
  4. Lewis T. A, Newcombe D. A, Crawford R. L (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307
     Google Scholar
  5. Fuller M.E.; Hatzinger, P.B., Rungmakol, D.; Schuster, R.L., Steffan R.J. (2004). Enhancing the Attenuation of Explosives in Surface Soils at Military Facilities: Combined Sorption and Biodegradation. Environmental Toxicology and Chemistry, 23, 313.
     Google Scholar
  6. Patterson J, J. Brown, W. Duckert, J. Polson, N. I. Shapira. (1976). State-of-the-art: Military Explosives and Propellants Production Industry, Vol. 1, Rep. No. EPA- 600/2-76-213a, American Defense Preparedness Association, Washington, D. C.
     Google Scholar
  7. Won, W. D., L. H. DiSalvo, and J. N. (1976). Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31, 576-580.
     Google Scholar
  8. Klausmeier, R. E., J. L. Osmon, and D. R. Walls. (1973). The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15, 309-317.
     Google Scholar
  9. Kurinenko, B.M., G.Y. Yakovleva, N.A. Denivarova, and Y.V. Abreimova. (2003). Specific
     Google Scholar
  10. toxic effects of 2,4,6-trinitrotoluene on Bacillus subtilis SK1. Appl. Biochem. Microbiol. 39, 275-278.
     Google Scholar
  11. Comfort, S.D., P. J. Shea, L. S. Hundal, Z. Li, B. L. Woodbury, J. L. Martin, and W. L. Powers. (1995). TNT transport and fate in contaminated soil. J. Environ. Qual., 24, 1174- 1182.
     Google Scholar
  12. Boopathy. R. (2001). Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Bioresource Technology, 76, 241–244.
     Google Scholar
  13. Thiboutot. S., Ampleman. G and Hewitt. A. (2002). Guide for characterization of sites contaminated with energetic materials. Tech. Rep. ERDC/CRREL TR-02-1, US Army Engineer Research and Development Center, Hanover, NH, USA.
     Google Scholar
  14. Juhasz. A and R. Naidu. R. (2007). “Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments,” Reviews of Environmental Contamination and Toxicology, 191, 163–215.
     Google Scholar
  15. Pichtel. J. (2012). Distribution and Fate of Military Explosives and Propellants in soil: A Review. Applied and Environmental Soil Science. 20, 1 – 33
     Google Scholar
  16. Crocker, Fiona H.; Indest, Karl J.; Frederickson, Herbert L. (2006) Biodegradation of the Cyclic Nitramine Explosives RDX, HMX and CL-20. Applied Microbial Biotechnology, 73, 274-281.
     Google Scholar
  17. Burton. D.T and Turley. S.D. (1995). Reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) toxicity to the Cladoceran Ceriodaphnia dubia following photolysis in sunlight. Bulletin of Environmental Contamination and Toxicology, 55(1), 89–95.
     Google Scholar
  18. Shen, C.F, Guiot, S.R., Thiboutot, S., Ampleman, G. and Hawari, J. (1997). Fate of explosives and their metabolites in bioslurry treatment processes. Biodegradation. 8,339-347.
     Google Scholar
  19. Freedman, D.L. and Sutherland, K.W. (1998). Biodegradation of hexahydro-1,3,5-trinitro-1.3.5-triazine under nitrate-reducing conditions. Water Science and Technology. 38(7), 33-40.
     Google Scholar
  20. Rocheleau, S., Cimpoia, R., Paquet, L., Van Koppen, L, Guiot, S.R., Hawari,J., Thiboutot, S., Ampleman, G. and Sunahara, GI. (1999). Ecotoxicological evaluation of a bioslurry process treating TNT and RDX contaminated soil. Bioremediation Journal. 3, 233-245.
     Google Scholar
  21. Talmage, S.S, Opresko, D.M., Maxwel, C.J., Welsh, C.J.E., Cretella, F.M., Reno, P.H. and Daniel, F.B. (1999). Nitroaromatic munition compounds: environmental effects and screening values. Reviews in environmental contamination toxicology, 161, 1-156.
     Google Scholar
  22. Yinon. J. (1990). Toxicity and Metabolism of Explosives, CRC Press, Boca Raton, Fla, USA.
     Google Scholar
  23. Kim, H.Y. and Song, H.G. (2000). Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41, 317–320.
     Google Scholar
  24. Kalderis. D, Juhasz. A, R. Boopathy, and S. Comfort. (2011). “Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes (IUPAC technical report),” Pure and Applied Chemistry, 83(7), 1407–1484.
     Google Scholar
  25. Lynch. J.C. (2002). Dissolution kinetics of high explosive compounds (TNT, RDX, HMX), ERDC/EL TR-02-23, US Army Engineering Research and Development Center, Vicksburg, Miss, USA.
     Google Scholar
  26. Trumpolt. C.W, Crain. M, Cullison. C.D, Flanagan. S.J.P., Siegel. L, and Lathrop. S. (2005). Perchlorate: sources, uses, and occurrences in the environment. Remediation Journal, 16(1) 65–89
     Google Scholar
  27. Yamamoto. H, M. C. Morley, G. E. Speitel, and J. Clausen. (2004). Fate and transport of high explosives in a sandy soil: adsorption and desorption,” Soil and Sediment Contamination, 13(5) 459–477
     Google Scholar
  28. Brannon. J and Pennington. J. (2002). Environmental fate and transport process descriptors for explosives, ERDC/EL TR-02-10, U.S Army Engineer Research and Development Center, Vicksburg, Miss, USA.
     Google Scholar
  29. Brannon. J.M, C. B. Price, C. Hayes, and S. L. Yost. (2002). Aquifer soil cation substitution and adsorption of TNT, RDX, and HMX. Soil and Sediment Contamination, 11(3), 327–338.
     Google Scholar
  30. Xue. S.K, I. K. Iskandar, and H. M. Selim. (1995). Adsorptiondesorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils,” Soil Science, 160 (5), 317–327.
     Google Scholar
  31. Brannon. J, P. Deliman, C. Ruiz. (1999). Conceptual model and process descriptor formulations for fate and transport of UXO. Tech. Rep. IRRP-99-1, US Army Engineer Research and Development Center, Vicksburg, Miss, USA.
     Google Scholar
  32. Pennington. J.C, D. Gunnison, D. W. Harrelson. (1999). Natural attenuation of explosives in soil and water systems at Department of Defence sites: interim report,” Tech. Rep. EL-99-8, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss, USA.
     Google Scholar
  33. Ainsworth. C.C, S. D. Harvey, J. E. Szecsodt. (1993). Relationship between the leachability characteristics of unique energetic compounds and soil properties,” Project 91PP1800, US Army Biomedical Research and Development Laboratory, Fort Detrick, Md, USA.
     Google Scholar
  34. Price. C.B, J. M. Brannon, S. L. Yost. (1998). Transformation of RDX and HMX under controlled Eh/pH conditions,” Tech. Rep. IRRP-98-2, US Army Engineering Waterways Experimental Station, Vicksburg, Miss, USA.
     Google Scholar
  35. Hennecke. D, W. Kordel, K. Steinbach, and B. Herrmann. Transformation processes of explosives in natural water/sediment systems,” in Proceedings of the 10th International UFZ Deltares/TNO Conference on Management of Soil, Groundwater and Sediments, Milano, Italy, September 2008.
     Google Scholar
  36. McGrath. C.J. (1995). Review of formulations for processes affecting the subsurface transport of explosives. Tech. Rep. IRRP- 95-2, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss, USA, 1995.
     Google Scholar
  37. Saupe. A, H. J. Garvens, and L. Heinze. (1998). Alkaline hydrolysis of TNT and TNT in soil followed by thermal treatment of the hydrolysates. Chemosphere, 36(8), 1725–1744.
     Google Scholar
  38. Emmrich. E. (1999). Kinetics of the alkaline hydrolysis of 2,4,6- trinitrotoluene in aqueous solution and highly contaminated soils. Environmental Science and Technology, 33(21), 3802–3805.
     Google Scholar
  39. Bajpai. R, D. Parekh, S. Herrmann, M. Popovic, J. Paca,´ and M. Qasim. (2004). A kinetic model of aqueous-phase alkali hydrolysis of 2,4,6-trinitrotoluene. Journal of Hazardous Materials, 106(1), 37–44.
     Google Scholar
  40. Balakrishnan. V.K, A. Halasz, and J. Hawari. (2003). Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environmental Science and Technology, 37, 1838–1843.
     Google Scholar
  41. Kaplan, D.L. (1996). Biotechnology and bioremediation for organic energetic compounds. In: Organic energetic compounds. Ed. P. Marinkas, pp 373-415. New York: Nova Science Publishers, Inc.
     Google Scholar
  42. Park. J, S. D. Comfort, P. J. Shea, and T. A. Machacek. (2004). Remediating munitions contaminated soil with zero valent iron and cationic surfactants,” Journal of Environmental Quality, 33(4), 1305–1313
     Google Scholar
  43. Zaripov, S.A., Naumov, A.V., Abdrakhmanova, J.F., Garusov, A.V., Naumova, R.P., 2002. Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol. Lett. 217, 213–217
     Google Scholar
  44. Nunez, A.E., Caballero, A., Ramos, J.L. (2001). Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65, 335– 352
     Google Scholar
  45. Fernando, T., Bumpus, J.A., Aust, S.D. (1990). Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol, 56, 1666–1671.
     Google Scholar
  46. Yin, P., Bai, F., Zhou, P., (1998). Studies on the yeasts and yeast-like fungi degrading trinitrotoluene. Wei Sheng Wu Xue Bao. 38, 295– 299.
     Google Scholar
  47. Buncel, E. (1982). Role of Meisenheimer or sigma complexes in nitroarene-base interactions. In: The chemistry of functional groups. Supplement F: The chemistry of amino, nitroso and nitro compounds and their derivatives. Ed. S. Patai, pp 1225-1260. New York: JohnWiley and Sons.
     Google Scholar
  48. Roberts, D.J, Ahmad, F. and Pendharkar, S. (1996), Optimization of an aerobic polishing stage to complete the anaerobic treatment of munitions-contaminated soils. Environmental Science and Technology. 30, 2021-2026.
     Google Scholar
  49. Funk, S.B., Roberts. D.I., Crawford. D.L. and Crawford, R.L. (1993). Initial phase optimization for bioremediation of munition compound-contaminated soils. Applied and environmental microbiology. 59, 171-177.
     Google Scholar
  50. Bryant, C. and Deluca. M. (1991). Purification and characterization of an oxygen insensitive NAD(P)Ii nitroreductase from Enterobacter cloacae. Journal of Biological Chemistry, 266, 4119 4125.
     Google Scholar
  51. Bryant, C., Hubbard, L. and Mcelroy. W.D. (1991). Clonine, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. Journal of Biological Chemistry, 266, 4126-4130.
     Google Scholar
  52. Zenno, S., Koike, H., Tanokura, M. and Saigo, K. (1996). Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to Prase I, the major flavin reductase in Vibrio fischeri. Journal of Biochemistry, 120, 736-744.
     Google Scholar
  53. Zhao. J.S, D. Fournier, S. Thiboutot, G. Ampleman, and J. Hawari. (2004). Biodegradation and bioremediation of explosives, in Applied Bioremediation and Phytoremediation, A. Singh and O. P. Ward, Eds., Springer, New York, NY, USA.
     Google Scholar
  54. Geetanjali, M.L., G.J. Suresh and Vikram S. Ghole. (2005). TNT biotranformation potential of the clinical isolate of Salmonella typhimurium-potential ecological implications. Official Publication of Indian Association of Occupational Health, 9(1), 29-34.
     Google Scholar
  55. Wittich, R.M., J.L. Ramos and P.V. Dillewijn. (2009). Microorganisms and explosives: Mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ.Sci. Technol., 43(8), 2773-2776.
     Google Scholar
  56. Rahal, A. G and Lobna A. M. (2011). Degradation of 2,4,6-Trinitrotoluene (TNT)by Soil Bacteria Isolated From TNT Contaminated Soil. Australian Journal of Basic and Applied Sciences, 5(2), 8-17
     Google Scholar
  57. Jain. M.R, Zinjarde S.S, Deobagkar D.D and Deobagkar D.N. (2004). 2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Marine Pollution Bulletin, 65, 34-40.
     Google Scholar
  58. Esteve-Nunez, A., and J.L. Ramos. (1998). Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ. Sci. Technol. 32, 3802-3808.
     Google Scholar
  59. Oh, B., P.J. Shea, R.A. Drijber, G.K. Vasilyeya, and G. Sarath. (2003). TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation. 14, 309-319.
     Google Scholar
  60. Kalafut, T., M.E. Wales, V.K. Rastogi, R.P. Naumova, S.K. Zaripova, and J.R. Wild. (1998). Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr. Microbiol. 36, 45-54.
     Google Scholar
  61. Stenuit, B., L. Eyers, R. Rozenberg, J.L. Habib-Jiwan, and S.N. Agathos. (2006). Aerobic growth on 2,4,6-trinitrotoluene (TNT) as sole nitrogen source by Escherichia coli and evidence of TNT denitration with whole cells and cell-free extracts. Appl. Environ. Microbiol. 72, 7945-7948.
     Google Scholar
  62. Kurinenko, B.M., G.Y. Yakovleva, N.A. Denivarova, and Y.V. Abreimova. (2003). Specific
     Google Scholar
  63. toxic effects of 2,4,6-trinitrotoluene on Bacillus subtilis SK1. Appl. Biochem. Microbiol. 39, 275-278.
     Google Scholar
  64. Martin, J.L., S.D. Comfort, P.J. Shea, T.A. Kokjohn, and R.A. Drijber. (1997). Denitration of 2,4,6 trinitrotoluene by Pseudomonas savastanoi. Can. J. Microbiol. 43, 447-455
     Google Scholar
  65. Kim, H.Y., G. Benett, and H.G. Song. (2002). Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol. Lett. 24, 2023-2028
     Google Scholar
  66. Pak, J.W., K.L. Knoke, D.R. Noguera, B.G. Fox, and G.H. Chambliss. (2000). Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl. Environ. Microbiol. 66, 4742-4750
     Google Scholar
  67. Fiorella, P.D., and J.C. Spain. (1997). Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl. Environ. Microbiol. 63, 2007-2015
     Google Scholar
  68. Coleman. N.V, Nelson. D.R, and Duxbury. T. (1998). Aerobic biodegradation of hexahydro-1,3,5 trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biology and Biochemistry. 30(8-9) 1159–1167.
     Google Scholar
  69. Groom. C.A, Beaudet. S, Halasz. A, Paquet. L, and Hawari. J. (2001). Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazine (HMX) and their degradation products in soil environments. Journal of Chromatography A, 909(1), 53–60.
     Google Scholar
  70. Regan. K.M and Crawford. R.L. (1994). Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnology Letters, 16(10), 1081–1086
     Google Scholar
  71. Young. D.M, Unkefer. P.J, and Ogden. K.L. (1997). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens, Biotechnology and Bioengineering, 53, 515–522.
     Google Scholar
  72. Sheremata. T.W and Hawari. J. (2000). Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environmental Science and Technology, 34(16), 3384–3388.
     Google Scholar
  73. Van Aken. B, Yoon. J.M, Just. C.L, and Schnoor. J.L. (2004). Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltodesp × nigra DN-34). Environmental Science and Technology, 38(17), 4572–4579
     Google Scholar
  74. Fournier. D, Halasz. A, Thiboutot. S, Ampleman. G, Manno. D, and Hawari. J. (2004). Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environmental Science and Technology, 38(15), 4130–4133
     Google Scholar
  75. Adrian, Neal R.; Arnett, Clint M. (2007). Anaerobic Biotransformation of Explosives in Aquifer Slurries Amended with Ethanol and Propylene Glycol. Chemosphere, 66, 1849-1856.
     Google Scholar